【无标题】

生成模型评价指标(图像、视频)

  • KL散度(相对熵)
  • [IS(Inception Score)](#IS(Inception Score))
  • [FID(Fréchet Inception Distance)](#FID(Fréchet Inception Distance))
  • [Perceptual Path Length](#Perceptual Path Length)
  • FVD

KL散度(相对熵)

用于衡量两个概率分布之间的相似度,KL散度值越小,分布越相似。

其中p(x)为真实分布,q(x)为模型预测的分布。

IS(Inception Score)

用于评价生成模型所生成图片的质量与多样性,值越大越好。缺点:只考虑生成样本,真实性判断与预训练Inception v3模型的数据集强相关。

其中x为pg生成的图片。

  • p(y|x) 衡量生成图片的清晰度,熵越小,分布越尖锐,代表图像越清晰。计算方式为把x输入到Inception v3中,得到一个1000维的特征向量y,表示图片属于1000个类别的概率。图片清晰度越高,则x属于某个类别的概率就越高,即y中的某个维度的值会很大,而其他维度的值会很小。

  • p(y) 衡量图片的多样性,计算方式为取N个生成样本,求p(y|x)的均值。结果的熵越大,代表生成的图片左所有类别中的分布越均匀。

  • Dkl表示表示求p(y|x)对于p(y)的KL散度,如果 p(y|x) 和 p(y) 的距离很大,说明前者所个很尖锐的分布,而后者是一个均匀分布,从而说明模型清晰度和多样性都很好。

FID(Fréchet Inception Distance)

直接考虑生成数据和真实数据在feature(使用Inception Net-V3全连接前的2048维向量作为图片的feature)层次的距离,不再额外的借助分类器,以此来衡量生成图片和真实图片的距离,FID值越小說明相似度越高。FID无法反映生成多样性(直接copy训练集的模型FID会很小)。

本质上,FID是衡量两个多元正态分布的距离:

Perceptual Path Length

衡量模型结合不同的训练图片特征的能力,也就是生成器能否很好的把不同图片的特征分离出来,如不同的噪声z分量控制所生成图片的不同区域。

计算方式:给出两个随机噪声 ,为求得两点的感知路径长度PPL,采用微分的思想。把两噪声点插值路径细分成多个小段,求每个小段的长度,再求平均。直观来说,PPL评估利用生成器从一个图片变到另一个图片的距离,越小越好。

简单理解:越相近的输出,其对应的z应该也应该距离越小,如下图的z1和z2生成狗的图片,从z1到z2的变化路径中的z,生成的图片也应该是狗。

FVD

把图像特征提取网络换成视频特征提取网络,其他与FID基本相似

相关推荐
Coding茶水间4 分钟前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Salt_07284 小时前
DAY44 简单 CNN
python·深度学习·神经网络·算法·机器学习·计算机视觉·cnn
雍凉明月夜4 小时前
深度学习网络笔记Ⅱ(常见网络分类1)
人工智能·笔记·深度学习
m0_692457105 小时前
图像的几何变换
人工智能·计算机视觉
自己的九又四分之三站台5 小时前
OpenCV介绍
人工智能·opencv·计算机视觉
RaymondZhao346 小时前
【深度硬核】AI Infra 架构漫游指南
人工智能·深度学习·架构
Coovally AI模型快速验证6 小时前
YOLO11算法深度解析:四大工业场景实战,开源数据集助力AI质检落地
人工智能·神经网络·算法·计算机视觉·无人机
Byron Loong6 小时前
【机器视觉】人物安全距离监测
python·yolo·计算机视觉
惊鸿一博6 小时前
深度学习概念_随机梯度下降 与 ADAM 的区别与联系 公式化表达
人工智能·深度学习
哥布林学者7 小时前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (四)YOLO 的完整传播过程
深度学习·ai