生成模型评价指标(图像、视频)
- KL散度(相对熵)
- [IS(Inception Score)](#IS(Inception Score))
- [FID(Fréchet Inception Distance)](#FID(Fréchet Inception Distance))
- [Perceptual Path Length](#Perceptual Path Length)
- FVD
KL散度(相对熵)
用于衡量两个概率分布之间的相似度,KL散度值越小,分布越相似。
其中p(x)为真实分布,q(x)为模型预测的分布。
IS(Inception Score)
用于评价生成模型所生成图片的质量与多样性,值越大越好。缺点:只考虑生成样本,真实性判断与预训练Inception v3模型的数据集强相关。
其中x为pg生成的图片。
-
p(y|x) 衡量生成图片的清晰度,熵越小,分布越尖锐,代表图像越清晰。计算方式为把x输入到Inception v3中,得到一个1000维的特征向量y,表示图片属于1000个类别的概率。图片清晰度越高,则x属于某个类别的概率就越高,即y中的某个维度的值会很大,而其他维度的值会很小。
-
p(y) 衡量图片的多样性,计算方式为取N个生成样本,求p(y|x)的均值。结果的熵越大,代表生成的图片左所有类别中的分布越均匀。
-
Dkl表示表示求p(y|x)对于p(y)的KL散度,如果 p(y|x) 和 p(y) 的距离很大,说明前者所个很尖锐的分布,而后者是一个均匀分布,从而说明模型清晰度和多样性都很好。
FID(Fréchet Inception Distance)
直接考虑生成数据和真实数据在feature(使用Inception Net-V3全连接前的2048维向量作为图片的feature)层次的距离,不再额外的借助分类器,以此来衡量生成图片和真实图片的距离,FID值越小說明相似度越高。FID无法反映生成多样性(直接copy训练集的模型FID会很小)。
本质上,FID是衡量两个多元正态分布的距离:
Perceptual Path Length
衡量模型结合不同的训练图片特征的能力,也就是生成器能否很好的把不同图片的特征分离出来,如不同的噪声z分量控制所生成图片的不同区域。
计算方式:给出两个随机噪声 ,为求得两点的感知路径长度PPL,采用微分的思想。把两噪声点插值路径细分成多个小段,求每个小段的长度,再求平均。直观来说,PPL评估利用生成器从一个图片变到另一个图片的距离,越小越好。
简单理解:越相近的输出,其对应的z应该也应该距离越小,如下图的z1和z2生成狗的图片,从z1到z2的变化路径中的z,生成的图片也应该是狗。
FVD
把图像特征提取网络换成视频特征提取网络,其他与FID基本相似