闲庭信步使用图像验证平台加速FPGA的开发:第十二课——图像增强的FPGA实现

(本系列只需要modelsim即可完成数字图像的处理,每个工程都搭建了全自动化的仿真环境,只需要双击 文件就可以完成整个的仿真,大大降低了初学者的门槛!!!! 如需要该系列的工程文件请关注知识星球: 成工fpga,https://t.zsxq.com/DMeqH 关注即送200GB学习资料,链接已置顶!)

本文采用的图像增强的滤波因子如下所示,由于有了data_cache模块,图像增加的FPGA实现比图像的均值滤波更加简单,直接对缓存后的5个数据就像加减即可。

这个还真的不是成工的文章越来越水了,一是因为有图像测试平台,让开发的思路非常的明确;二是我们已经设计好了 data_cache模块,不用再去考虑图像的缓存;三是我们选用的这个图像增强的因子确实是简单。

在\src\sharpen文件夹下新建sharpen.sv文件,基本功能如下,首先就是例化data_cache模块获取3x3的区域像素,用加减就可以在一个时钟周期内完成因子的滤波计算。

在top文件中,例化了obtain_raw模块和sharpen模块,分别获取RAW图像并对RAW图像进行增强滤波。

在tb_image_sim文件中的第二个initial块中,将图像测试平台和FPGA硬件仿真的结果保存并比对。

我们双击sim文件夹下的top_tb.bat文件,完成系统的自动化仿真。

可以看到在modelsim的Transcript有如下的打印信息,图像测试平台和FPGA硬件仿真的结果一致。

打开img文件夹,也可以看到图像测试平台和FPGA硬件仿真的结果是一致的(no_seq*是图像测试平台处理后的图片,seq*是FPGA硬件仿真处理后的结果)。

图像增强还有别的滤波因子,比如如下的因子,效果应该更好。

在仿真测试平台,我们实现了这个因子。

重新进行仿真,仿真平台有新的因子,FPGA设计还是用旧的因子,我们比对一下效果,左边是使用新的滤波算子,右边是旧的滤波算子,很明显左边的增强效果要好一些。

相关推荐
奋斗的牛马14 小时前
FPGA—ZYNQ学习Debug(三)
学习·fpga开发
小马过河R15 小时前
AIGC视频生成之Deepseek、百度妙笔组合实战小案例
人工智能·深度学习·计算机视觉·百度·aigc
王哈哈^_^16 小时前
【数据集】【YOLO】【目标检测】农作物病害数据集 11498 张,病害检测,YOLOv8农作物病虫害识别系统实战训推教程。
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·1024程序员节
Theodore_102218 小时前
神经学习(4)神经网络的向量化实现与TensorFlow训练流程
人工智能·深度学习·机器学习·计算机视觉·线性回归
Antonio91519 小时前
【图像处理】图像错切变换
图像处理·人工智能
cycf19 小时前
面向模块的综合技术之控制集优化(七)
fpga开发
B站计算机毕业设计之家19 小时前
计算机视觉:python手写数字识别系统 手写数字检测 CNN算法 卷积神经网络 OpenCV和Keras模型 大数据毕业设计(建议收藏)✅
python·神经网络·opencv·计算机视觉·cnn·手写数字·数字识别
wolfseek19 小时前
opencv模版匹配
c++·人工智能·opencv·计算机视觉
B站计算机毕业设计之家19 小时前
Python手势识别检测系统 基于MediaPipe的改进SSD算法 opencv+mediapipe 深度学习 大数据 (建议收藏)✅
python·深度学习·opencv·计算机视觉·1024程序员节
Lab4AI大模型实验室19 小时前
【每日Arxiv热文】还在为视频编辑发愁?港科大&蚂蚁集团提出Ditto框架刷新SOTA!
人工智能·计算机视觉·视频编辑·ai agent·智能体学习