闲庭信步使用图像验证平台加速FPGA的开发:第十二课——图像增强的FPGA实现

(本系列只需要modelsim即可完成数字图像的处理,每个工程都搭建了全自动化的仿真环境,只需要双击 文件就可以完成整个的仿真,大大降低了初学者的门槛!!!! 如需要该系列的工程文件请关注知识星球: 成工fpga,https://t.zsxq.com/DMeqH 关注即送200GB学习资料,链接已置顶!)

本文采用的图像增强的滤波因子如下所示,由于有了data_cache模块,图像增加的FPGA实现比图像的均值滤波更加简单,直接对缓存后的5个数据就像加减即可。

这个还真的不是成工的文章越来越水了,一是因为有图像测试平台,让开发的思路非常的明确;二是我们已经设计好了 data_cache模块,不用再去考虑图像的缓存;三是我们选用的这个图像增强的因子确实是简单。

在\src\sharpen文件夹下新建sharpen.sv文件,基本功能如下,首先就是例化data_cache模块获取3x3的区域像素,用加减就可以在一个时钟周期内完成因子的滤波计算。

在top文件中,例化了obtain_raw模块和sharpen模块,分别获取RAW图像并对RAW图像进行增强滤波。

在tb_image_sim文件中的第二个initial块中,将图像测试平台和FPGA硬件仿真的结果保存并比对。

我们双击sim文件夹下的top_tb.bat文件,完成系统的自动化仿真。

可以看到在modelsim的Transcript有如下的打印信息,图像测试平台和FPGA硬件仿真的结果一致。

打开img文件夹,也可以看到图像测试平台和FPGA硬件仿真的结果是一致的(no_seq*是图像测试平台处理后的图片,seq*是FPGA硬件仿真处理后的结果)。

图像增强还有别的滤波因子,比如如下的因子,效果应该更好。

在仿真测试平台,我们实现了这个因子。

重新进行仿真,仿真平台有新的因子,FPGA设计还是用旧的因子,我们比对一下效果,左边是使用新的滤波算子,右边是旧的滤波算子,很明显左边的增强效果要好一些。

相关推荐
xiaohouzi11223317 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
小关会打代码17 小时前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
天天进步201518 小时前
用Python打造专业级老照片修复工具:让时光倒流的数字魔法
人工智能·计算机视觉
荼蘼18 小时前
答题卡识别改分项目
人工智能·opencv·计算机视觉
IT古董19 小时前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn
风_峰19 小时前
Ubuntu Linux SD卡分区操作
嵌入式硬件·ubuntu·fpga开发
FPGA_Linuxer20 小时前
FPGA 40 DAC线缆和光模块带光纤实现40G UDP差异
网络协议·fpga开发·udp
张子夜 iiii20 小时前
4步OpenCV-----扫秒身份证号
人工智能·python·opencv·计算机视觉
paid槮1 天前
机器视觉之图像处理篇
图像处理·opencv·计算机视觉
通街市密人有1 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉