闲庭信步使用图像验证平台加速FPGA的开发:第十二课——图像增强的FPGA实现

(本系列只需要modelsim即可完成数字图像的处理,每个工程都搭建了全自动化的仿真环境,只需要双击 文件就可以完成整个的仿真,大大降低了初学者的门槛!!!! 如需要该系列的工程文件请关注知识星球: 成工fpga,https://t.zsxq.com/DMeqH 关注即送200GB学习资料,链接已置顶!)

本文采用的图像增强的滤波因子如下所示,由于有了data_cache模块,图像增加的FPGA实现比图像的均值滤波更加简单,直接对缓存后的5个数据就像加减即可。

这个还真的不是成工的文章越来越水了,一是因为有图像测试平台,让开发的思路非常的明确;二是我们已经设计好了 data_cache模块,不用再去考虑图像的缓存;三是我们选用的这个图像增强的因子确实是简单。

在\src\sharpen文件夹下新建sharpen.sv文件,基本功能如下,首先就是例化data_cache模块获取3x3的区域像素,用加减就可以在一个时钟周期内完成因子的滤波计算。

在top文件中,例化了obtain_raw模块和sharpen模块,分别获取RAW图像并对RAW图像进行增强滤波。

在tb_image_sim文件中的第二个initial块中,将图像测试平台和FPGA硬件仿真的结果保存并比对。

我们双击sim文件夹下的top_tb.bat文件,完成系统的自动化仿真。

可以看到在modelsim的Transcript有如下的打印信息,图像测试平台和FPGA硬件仿真的结果一致。

打开img文件夹,也可以看到图像测试平台和FPGA硬件仿真的结果是一致的(no_seq*是图像测试平台处理后的图片,seq*是FPGA硬件仿真处理后的结果)。

图像增强还有别的滤波因子,比如如下的因子,效果应该更好。

在仿真测试平台,我们实现了这个因子。

重新进行仿真,仿真平台有新的因子,FPGA设计还是用旧的因子,我们比对一下效果,左边是使用新的滤波算子,右边是旧的滤波算子,很明显左边的增强效果要好一些。

相关推荐
Juchecar1 小时前
从微观到宏观:物体颜色被感知
计算机视觉
CoovallyAIHub3 小时前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
深度学习·算法·计算机视觉
小小测试开发3 小时前
Python数据科学与图像处理利器组合:Prophet、Arch、Scikit-image、Pillow-heif用法全解析
图像处理·python·pillow
youngfengying8 小时前
《轻量化 Transformers:开启计算机视觉新篇》
人工智能·计算机视觉
思通数科人工智能大模型13 小时前
零售场景下的数智店商:解决盗损问题,化解隐性成本痛点
人工智能·目标检测·计算机视觉·数据挖掘·知识图谱·零售
萧鼎14 小时前
Python Mahotas 图像处理库:高性能计算机视觉工具
图像处理·python·计算机视觉
海涛高软14 小时前
yolov8目标检测训练在rk3588上部署
fpga开发
nnn__nnn16 小时前
卷积神经网络经典架构全景解析:从 ILSVRC 竞赛到视觉技术的生态级演进
计算机视觉·架构·cnn
第二层皮-合肥16 小时前
USB3.0专题-硬件的测试
fpga开发
hexiaoyan82717 小时前
高速数据采集卡设计方案:886-基于RFSOC的8路5G ADC和8路9G的DAC PCIe卡
fpga开发·高速数据采集卡·光纤pcie卡·通用pcie卡·xc7a100t板卡