线性代数(六)| 二次型 标准型转换 正定二次型 正定矩阵

文章目录

  • [1. 二次型化为标准型](#1. 二次型化为标准型)
    • [1.1 正交变换法](#1.1 正交变换法)
    • [1.2 配方法](#1.2 配方法)
  • [2 . 正定二次型与正定矩阵](#2 . 正定二次型与正定矩阵)

1. 二次型化为标准型

和第五章有什么样的联系

首先上一章我们说过对于对称矩阵,一定存在一个正交矩阵Q,使得Q\^{-1}AQ=B B为对角矩阵

那么这一章中,我们讲到,二次型写成矩阵后本质上就是一个对称矩阵,而我们想把它变的标准型,不就正好是一个对角矩阵,那么实际上我们的这个化标准型,本质上不就是矩阵对角化吗

但我们在上一章中是Q\^{-1}AQ=B 引入的 矩阵关系叫矩阵相似

而在这一章中是Q\^{T}AQ=B 引入的矩阵关系叫矩阵合同

有同学会很好奇,那这不是不一样嘛,而我们其实了解到,对于正交矩阵 Q − 1 = Q T Q^{-1}=Q^T Q−1=QT ,也就不难理解他们是一样的了

1.1 正交变换法

(1)求矩阵特征值和特征向量

(2)特征向量正交化和单位化

1.2 配方法

一般用到比较少

2 . 正定二次型与正定矩阵

​ 等价关系

(1)二次型 X T A X X^TAX XTAX是>0的

(2)A是正定矩阵

(3)A的正惯性指数是n

(4)A合同于单位矩阵

(5)A的特征值都是正数

(6)A的顺序主子式都大于零

​ 可以写出二次型矩阵 ( 1 t 1 t 4 0 1 0 2 ) \begin{pmatrix}1&t&1\\t&4&0\\1&0&2\end{pmatrix} 1t1t40102 另它的行列式大于零即可

相关推荐
知识在于积累2 小时前
在指定条件下获取布尔矩阵中的索引矩阵
矩阵·索引·布尔矩阵
wa的一声哭了4 小时前
矩阵分析 方阵幂级数与方阵函数
人工智能·python·线性代数·算法·自然语言处理·矩阵·django
wa的一声哭了4 小时前
矩阵分析 单元函数矩阵微积分和多元向量值的导数
linux·c语言·c++·线性代数·算法·矩阵·云计算
老歌老听老掉牙4 小时前
SymPy 中矩阵乘法的顺序与元素类型分析
python·矩阵·sympy
POLITE35 小时前
Leetcode 54.螺旋矩阵 JavaScript (Day 8)
javascript·leetcode·矩阵
鲨莎分不晴6 小时前
从“像素对”到“纹理感”:深度解析灰度共生矩阵 (GLCM)
线性代数·矩阵
轻微的风格艾丝凡6 小时前
模型拆解--Variable Inductance Modeling
线性代数·simulink
雾喔8 小时前
1970. 你能穿过矩阵的最后一天 + 今年总结
线性代数·算法·矩阵
AI科技星19 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
JinSu_1 天前
【学习体会】Eigen和GLM在矩阵初始化和底层数据存储的差异
线性代数·矩阵