线性代数(六)| 二次型 标准型转换 正定二次型 正定矩阵

文章目录

  • [1. 二次型化为标准型](#1. 二次型化为标准型)
    • [1.1 正交变换法](#1.1 正交变换法)
    • [1.2 配方法](#1.2 配方法)
  • [2 . 正定二次型与正定矩阵](#2 . 正定二次型与正定矩阵)

1. 二次型化为标准型

和第五章有什么样的联系

首先上一章我们说过对于对称矩阵,一定存在一个正交矩阵Q,使得Q\^{-1}AQ=B B为对角矩阵

那么这一章中,我们讲到,二次型写成矩阵后本质上就是一个对称矩阵,而我们想把它变的标准型,不就正好是一个对角矩阵,那么实际上我们的这个化标准型,本质上不就是矩阵对角化吗

但我们在上一章中是Q\^{-1}AQ=B 引入的 矩阵关系叫矩阵相似

而在这一章中是Q\^{T}AQ=B 引入的矩阵关系叫矩阵合同

有同学会很好奇,那这不是不一样嘛,而我们其实了解到,对于正交矩阵 Q − 1 = Q T Q^{-1}=Q^T Q−1=QT ,也就不难理解他们是一样的了

1.1 正交变换法

(1)求矩阵特征值和特征向量

(2)特征向量正交化和单位化

1.2 配方法

一般用到比较少

2 . 正定二次型与正定矩阵

​ 等价关系

(1)二次型 X T A X X^TAX XTAX是>0的

(2)A是正定矩阵

(3)A的正惯性指数是n

(4)A合同于单位矩阵

(5)A的特征值都是正数

(6)A的顺序主子式都大于零

​ 可以写出二次型矩阵 ( 1 t 1 t 4 0 1 0 2 ) \begin{pmatrix}1&t&1\\t&4&0\\1&0&2\end{pmatrix} 1t1t40102 另它的行列式大于零即可

相关推荐
醒过来摸鱼14 小时前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
醒过来摸鱼15 小时前
9.8 贝塞尔曲线
线性代数·算法·numpy
xier_ran1 天前
Python 切片(Slicing)完全指南:从基础到多维矩阵
开发语言·python·矩阵
lijil1681 天前
Hypermesh估算发动机缸体质量矩阵
线性代数·矩阵
FanXing_zl2 天前
快速掌握线性代数:核心概念与深度解析
线性代数·算法·机器学习
点云SLAM2 天前
四元数 (Quaternion)微分-四元数导数的矩阵表示推导(8)
线性代数·算法·计算机视觉·矩阵·机器人·slam·四元数
西西弗Sisyphus2 天前
四元数(Quaternion)、叉积(Cross Product)与点积(Dot Product)之间的关系
线性代数·机器学习·行列式·叉积·点积·四元数
YaraMemo2 天前
对称/Hermitian矩阵相关记号
线性代数·5g·矩阵·信息与通信
ChoSeitaku2 天前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
不穿格子的程序员3 天前
从零开始写算法——二分-搜索二维矩阵
线性代数·算法·leetcode·矩阵·二分查找