classification_report分类报告的含义

classification_report分类报告

基础知识

混淆矩阵(Confusion Matrix)

可以看出来类别之间相互误分的情况,查看是否有特定的类别相互混淆,能够帮我们调整后续模型,比如一些类别设置权重衰减。

预测为正类别 预测为负类别
实际为正类别 True Positive (TP) False Negative (FN)
实际为负类别 False Positive (FP) True Negative (TN)

TP、TN、FP、FN

TP(True Positives):预测为正类别,并且预测对了

TN(True Negatives):预测为负类别,而且预测对了

FP(False Positives):预测为正类别,但是预测错了

FN(False Negatives):预测为负类别,但是预测错了

精度(Precision)

精确率表示模型预测为正类别的样本中有多少是真正的正类别。
P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP

准确率(Accuracy)

正确分类的样本占总样本数的比例。
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

召回率(Recall)

在所有实际为正类别的样本中,模型能够正确预测为正类别的比例。
R e c a l l = T P T P + F N Recall=\frac{TP}{TP+FN} Recall=TP+FNTP

高召回率意味着模型能够有效地捕捉到实际为正类别的样本。

与Precision的关系:负相关。

F1分数(F1-score)

F1 分数的取值范围是 [0, 1],越接近 1 表示模型的性能越好,同时考虑到了模型在查准率和查全率之间的平衡。
F 1 = 2 × ( P r e c i s i o n × R e c a l l ) P r e c i s i o n + R e c a l l F1=\frac{2×(Precision×Recall)}{Precision+Recall} F1=Precision+Recall2×(Precision×Recall)

classification_report分类报告

Python代码中使用"classification_report(Y_test,Y_prediction)"可以查看分类报告,其中Y_test为真实标签、Y_prediction为预测结果。

这里以一个数据量为10大小的二分类为例子,方便手算来理解一遍分类报告。

输入如下Python代码:

python 复制代码
from sklearn.metrics import classification_report
Y_test=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
Y_prediction=[0, 1, 0, 0, 0, 1, 1, 0, 0, 1]
print(classification_report(Y_test,Y_prediction))

得到该10个数据的二分类的分类报告:

先画个混淆矩阵:

预测为1 预测为0
实际为1 3 2
实际为0 1 4

给出了每类别对应的精度(Precision)、召回率(Recall)F1分数(F1-score)、真实中有多少个是该类别的(Support)、准确率(Accuracy)、宏平均(macro avg)和加权平均(weighted avg)。

Precision:预测为x的样本中,有多少被正确预测为x。

Precision_0=4/(2+4)=0.67

Precision_1=3/(3+1)=0.75

Recall:实际为x的类别中,有多少预测为x。

Recall_0=3/5=0.60

Recall_1=4/5=0.80

F1分数:2×Precision×Recall /(Precision+Recall)。

Accuracy:全部样本里被分类正确的比例。

Accuracy=7/10

macro avg:上面类别各分数的直接平均。

macro avg_precision=(0.67+0.75)/2=0.71

weighted avg:上面类别各分数的加权(权值为support)平均。

macro avg_precision=(0.675+0.755)/10=0.71

相关推荐
Qspace丨轻空间2 分钟前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
没有不重的名么3 分钟前
门控循环单元GRU
人工智能·深度学习·gru
love_and_hope7 分钟前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
Chef_Chen10 分钟前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
2403_8757368723 分钟前
道品科技智慧农业中的自动气象检测站
网络·人工智能·智慧城市
学术头条1 小时前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典1 小时前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui1 小时前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
孙同学要努力1 小时前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
AI街潜水的八角1 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习