深度学习之基于Django+Tensorflow商品识别管理系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

项目简介

本系统是一个基于Django+Tensorflow的商品识别管理系统。通过深度学习技术,实现商品的自动识别和分类,为用户提供更加智能化、个性化的购物体验。

系统架构

  • 前端:采用Django框架的模板引擎,实现用户界面和交互逻辑。前端主要负责展示商品信息、接收用户输入和提交请求。
  • 后端:使用Django框架作为后端开发平台,负责处理前端请求、数据库操作和深度学习模型训练与预测。后端使用Tensorflow作为深度学习框架,实现商品图像的自动识别和分类。
  • 数据库:采用关系型数据库如MySQL或PostgreSQL,存储商品信息、用户数据和模型训练数据。

技术实现

  • 图像预处理:对上传的商品图像进行尺寸调整、归一化等预处理操作,以便于模型训练和识别。
  • 卷积神经网络(CNN):使用CNN作为图像识别的主要模型,通过大量的训练数据,学习商品图像的特征,实现自动识别和分类。
  • 模型训练与预测:使用Tensorflow的深度学习框架,实现模型的训练和预测功能。系统定期收集并处理大量商品图像数据,训练并优化模型。当有新的商品图像上传时,系统会调用训练好的模型进行识别和分类。
  • 服务器配置:为了保证系统的稳定性和安全性,需要配置高性能的服务器,并采用负载均衡等技术,确保系统的可扩展性和高可用性。

二、功能

环境:Python3.9、Django4.1、Tensorflow2.11、PyCharm

简介:深度学习之基于Django+Tensorflow商品识别管理系统(Web界面)

后台用户名:admin

后台密码:admin123

商品识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。

三、系统






四. 总结

本系统是一个基于Django+Tensorflow的商品识别管理系统,通过深度学习技术实现商品的自动识别和分类,为用户提供更加智能化、个性化的购物体验。该系统具有广泛的应用前景和市场潜力,值得进一步研究和推广。

相关推荐
AI蜗牛之家3 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
whyeekkk4 小时前
python打卡第48天
开发语言·python
Eiceblue6 小时前
Python读取PDF:文本、图片与文档属性
数据库·python·pdf
weixin_527550406 小时前
初级程序员入门指南
javascript·python·算法
程序员的世界你不懂7 小时前
Appium+python自动化(十)- 元素定位
python·appium·自动化
CryptoPP7 小时前
使用WebSocket实时获取印度股票数据源(无调用次数限制)实战
后端·python·websocket·网络协议·区块链
树叶@7 小时前
Python数据分析7
开发语言·python
老胖闲聊8 小时前
Python Rio 【图像处理】库简介
开发语言·图像处理·python
码界奇点9 小时前
Python Flask文件处理与异常处理实战指南
开发语言·python·自然语言处理·flask·python3.11
浠寒AI9 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python