深度学习之基于Django+Tensorflow商品识别管理系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

项目简介

本系统是一个基于Django+Tensorflow的商品识别管理系统。通过深度学习技术,实现商品的自动识别和分类,为用户提供更加智能化、个性化的购物体验。

系统架构

  • 前端:采用Django框架的模板引擎,实现用户界面和交互逻辑。前端主要负责展示商品信息、接收用户输入和提交请求。
  • 后端:使用Django框架作为后端开发平台,负责处理前端请求、数据库操作和深度学习模型训练与预测。后端使用Tensorflow作为深度学习框架,实现商品图像的自动识别和分类。
  • 数据库:采用关系型数据库如MySQL或PostgreSQL,存储商品信息、用户数据和模型训练数据。

技术实现

  • 图像预处理:对上传的商品图像进行尺寸调整、归一化等预处理操作,以便于模型训练和识别。
  • 卷积神经网络(CNN):使用CNN作为图像识别的主要模型,通过大量的训练数据,学习商品图像的特征,实现自动识别和分类。
  • 模型训练与预测:使用Tensorflow的深度学习框架,实现模型的训练和预测功能。系统定期收集并处理大量商品图像数据,训练并优化模型。当有新的商品图像上传时,系统会调用训练好的模型进行识别和分类。
  • 服务器配置:为了保证系统的稳定性和安全性,需要配置高性能的服务器,并采用负载均衡等技术,确保系统的可扩展性和高可用性。

二、功能

环境:Python3.9、Django4.1、Tensorflow2.11、PyCharm

简介:深度学习之基于Django+Tensorflow商品识别管理系统(Web界面)

后台用户名:admin

后台密码:admin123

商品识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。

三、系统






四. 总结

本系统是一个基于Django+Tensorflow的商品识别管理系统,通过深度学习技术实现商品的自动识别和分类,为用户提供更加智能化、个性化的购物体验。该系统具有广泛的应用前景和市场潜力,值得进一步研究和推广。

相关推荐
烛阴4 小时前
简单入门Python装饰器
前端·python
好开心啊没烦恼4 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
面朝大海,春不暖,花不开4 小时前
使用 Python 实现 ETL 流程:从文本文件提取到数据处理的全面指南
python·etl·原型模式
2301_805054565 小时前
Python训练营打卡Day59(2025.7.3)
开发语言·python
万千思绪6 小时前
【PyCharm 2025.1.2配置debug】
ide·python·pycharm
微风粼粼7 小时前
程序员在线接单
java·jvm·后端·python·eclipse·tomcat·dubbo
云天徽上7 小时前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5
你怎么知道我是队长8 小时前
python-input内置函数
开发语言·python
叹一曲当时只道是寻常8 小时前
Python实现优雅的目录结构打印工具
python
hbwhmama9 小时前
python高级变量XIII
python