DeCLIP 论文阅读

DeCLIP:supervision exists everywhere:a data efficient contrastive language-image pre-training paradigm

贡献:

  1. 论文是为了充分利用单模态和多模态,充分利用单模态特征用自监督(SIMSAM和MLM),多模态用图像文本对比学习实现;

  2. 一个图片的文本描述大部分都是集中在局部区域,作者使用RRC得到一个图像的局部区域进行实现;

  3. 一个图片有多种描述方式,提出用最近邻文本检索得到更多文本监督。(i.e.,对图像的文本描述1的特征向量在队列库中求余弦相似性得到最相似的描述2)

在SLIP基础上新增一个文本域的自监督,即该论文使用图片自监督+文本自监督+两倍图像-三倍文本对的对比学习。

模型

  • 图像自监督框架:SimSam
  • 文本自监督框架:MLM,每个句子中随机选择15%的单词,然后,80%的时间用【mask】替换单词,用10%的时间用随机token替换单词,用10%的时间不改变单词。最后得到语言模型对应的token域原始token进行交叉熵loss。
  • 图像-文本模态:原始的 CLIP 不使用文本增强,仅使用随机方形裁剪图像增强,因此需要大量数据。deCLIP使用随机数据增强,相比于原始CLIP,该论文监督信息更多。
  • 在嵌入空间中(具体来说是64K大小的队列)使用了Nearest-Neighbor 获得相似性的文本信息 。即,论文维护一个队列,在嵌入空间中使用最近邻检索得到一个最相似的文本描述。(隐式存在一对多,提供更好的监督信号,BLIP)

图片里灰色是原本的对比学习,绿的是自监督,橙色也是对比学习,蓝色是Nearest-Neighbor Supervision获得的最相似的文本和两个图片进行对比学习

总损失函数:

ref

https://zhuanlan.zhihu.com/p/585778761

相关推荐
CV-杨帆8 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
李加号pluuuus10 小时前
【论文阅读】Diffuse and Disperse: Image Generation with Representation Regularization
论文阅读
张较瘦_10 小时前
[论文阅读] 人工智能 + 软件工程 | 当LLMs遇上顺序API调用:StateGen与StateEval如何破解测试难题?
论文阅读·人工智能
berling0010 小时前
【论文阅读 | CVPR 2023 |CDDFuse:基于相关性驱动的双分支特征分解的多模态图像融合】
论文阅读
李加号pluuuus10 小时前
【论文阅读】Masked Autoencoders Are Effective Tokenizers for Diffusion Models
论文阅读
berling001 天前
【论文阅读 | IF 2025 | COMO:用于多模态目标检测的跨 Mamba 交互与偏移引导融合】
论文阅读·人工智能·目标检测
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 开源软件中的GenAI自白:开发者如何用、项目如何管、代码质量受何影响?
论文阅读·人工智能·软件工程
dundunmm2 天前
【论文阅读】A Survey on Knowledge-Oriented Retrieval-Augmented Generation(4)
论文阅读·大模型·llm·rag·检索增强生成·评估标准
CV-杨帆3 天前
论文阅读:arxiv 2025 A Survey on Data Contamination for Large Language Models
论文阅读·人工智能·语言模型
Jamence3 天前
多模态大语言模型arxiv论文略读(157)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记