DeCLIP 论文阅读

DeCLIP:supervision exists everywhere:a data efficient contrastive language-image pre-training paradigm

贡献:

  1. 论文是为了充分利用单模态和多模态,充分利用单模态特征用自监督(SIMSAM和MLM),多模态用图像文本对比学习实现;

  2. 一个图片的文本描述大部分都是集中在局部区域,作者使用RRC得到一个图像的局部区域进行实现;

  3. 一个图片有多种描述方式,提出用最近邻文本检索得到更多文本监督。(i.e.,对图像的文本描述1的特征向量在队列库中求余弦相似性得到最相似的描述2)

在SLIP基础上新增一个文本域的自监督,即该论文使用图片自监督+文本自监督+两倍图像-三倍文本对的对比学习。

模型

  • 图像自监督框架:SimSam
  • 文本自监督框架:MLM,每个句子中随机选择15%的单词,然后,80%的时间用【mask】替换单词,用10%的时间用随机token替换单词,用10%的时间不改变单词。最后得到语言模型对应的token域原始token进行交叉熵loss。
  • 图像-文本模态:原始的 CLIP 不使用文本增强,仅使用随机方形裁剪图像增强,因此需要大量数据。deCLIP使用随机数据增强,相比于原始CLIP,该论文监督信息更多。
  • 在嵌入空间中(具体来说是64K大小的队列)使用了Nearest-Neighbor 获得相似性的文本信息 。即,论文维护一个队列,在嵌入空间中使用最近邻检索得到一个最相似的文本描述。(隐式存在一对多,提供更好的监督信号,BLIP)

图片里灰色是原本的对比学习,绿的是自监督,橙色也是对比学习,蓝色是Nearest-Neighbor Supervision获得的最相似的文本和两个图片进行对比学习

总损失函数:

ref

https://zhuanlan.zhihu.com/p/585778761

相关推荐
江木1232 天前
论文阅读和代码实现EfficientDet(BiFPN)
论文阅读
Ayakanoinu2 天前
【论文阅读】Universal Adversarial Attacks for Visual Odometry Systems
论文阅读
HollowKnightZ2 天前
论文阅读笔记:UniFace: Unified Cross-Entropy Loss for Deep Face Recognition
论文阅读·笔记
HollowKnightZ2 天前
论文阅读笔记:ArcFace: Additive Angular Margin Loss for Deep Face Recognition
论文阅读·笔记
Luis Li 的猫猫2 天前
突破光学成像局限:全视野光学血管造影技术新进展
论文阅读·图像处理·人工智能·算法·目标检测
Jackilina_Stone3 天前
【论文阅读笔记】用于恶劣天气条件下的目标检测的IA-YOLO(Image-Adaptive YOLO) | 适合雾天和低光照场景
论文阅读·人工智能·笔记·yolo·目标检测·适合雾天和低光照场景·ia-yolo
Sol-itude3 天前
【文献阅读】Collective Decision for Open Set Recognition
论文阅读·人工智能·机器学习·支持向量机
Lostgreen4 天前
DeepSeek-R1 论文笔记:通过强化学习提升大语言模型的推理能力
论文阅读·人工智能·语言模型
Jackilina_Stone5 天前
【论文阅读笔记】FcaNet: Frequency Channel Attention Networks(2021/7/23)
论文阅读·人工智能·笔记·python·fcanet·msca
做怪小疯子6 天前
论文阅读:A comprehensive survey on model compression and acceleration
论文阅读·人工智能·深度学习