PaddleOCR Android demo替换最新识别库和模型

PaddleOCR的官方Android demo使用的PaddleLite版本目前是2.10,使用的paddle_lite_opt优化后的模型是v2版本。目前最新的PaddleLite版本是2.13RC,最新的模型版本是v4,据说有比较大提升。那么如何在官方demo中体验最新版本的PaddleLite识别库和v4模型呢?

下载PaddleLite

可以直接下载官方编译好的:github.com/PaddlePaddl...

下载后,解压,放到Android demo的app module根目录下,文件夹重命名为PaddleLite(与demo原编译脚本运行后自动生成的文件夹同名)。目录结构为:

如果你想使用低于2.13的版本的PaddleLite,那么需要注意的是,只支持python == 2.7\3.5\3.6\3.7。github.com/PaddlePaddl...

安装paddlelite工具

pip install paddlelite==2.13rc0

需要注意的是,这一步需要安装跟上述PaddleLite同版本的命令行工具,来优化模型。如果使用其他版本的paddlelite工具优化出来的模型,使用时会报错"Error: This model is not supported, because kernel for 'io_copy' is not supported by Paddle-Lite."

由于我上述下载的PaddleLite推理库的版本是2.13RC,所以这里我就安装2.13rc0版本的paddlelite。

优化模型

从这里下载最新的模型:github.com/PaddlePaddl...

需要下载三个模型,分别是文本检测模型、文本识别模型、文本方向分类模型。都各自下载最新的版本。注意下载的是"推理模型",而不是"训练模型"或"nb模型"。

下载之后,使用上述通过pip安装的paddlelite工具进行优化:

paddle_lite_opt --model_file=./inference.pdmodel --param_file=./inference.pdiparams --optimize_out=./output --valid_targets=arm --optimize_out_type=naive_buffer

运行完成后,会得到一个nb文件。对上述下载的文本检测模型、文本识别模型、文本方向分类模型分别执行,得到三个nb文件。将这三个nb文件,放到Android demo的asserts文件夹中替换原始的三个模型文件。

修改CMakeLists.txt

查找文件中对${PaddleLite\_DIR}的使用,注释掉新版PaddleLite中不再存在的文件对应的add\_custom\_command,再修改libpaddle\_light\_api\_shared.so文件的路径。

收尾

修改Android demo中的MiniActivity.java/Predictor.java/string.xml中,对模型文件或者模型文件夹的定义,使其与新的模型文件相匹配

运行

完美运行

参考文献

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

相关推荐
Grassto8 分钟前
Cursor Rules 使用
人工智能
MYH51613 分钟前
深度学习在非线性场景中的核心应用领域及向量/张量数据处理案例,结合工业、金融等领域的实际落地场景分析
人工智能·深度学习
Lilith的AI学习日记20 分钟前
什么是预训练?深入解读大模型AI的“高考集训”
开发语言·人工智能·深度学习·神经网络·机器学习·ai编程
聚客AI1 小时前
PyTorch玩转CNN:卷积操作可视化+五大经典网络复现+分类项目
人工智能·pytorch·神经网络
程序员岳焱1 小时前
深度剖析:Spring AI 与 LangChain4j,谁才是 Java 程序员的 AI 开发利器?
java·人工智能·后端
柠檬味拥抱1 小时前
AI智能体在金融决策系统中的自主学习与行为建模方法探讨
人工智能
智驱力人工智能1 小时前
智慧零售管理中的客流统计与属性分析
人工智能·算法·边缘计算·零售·智慧零售·聚众识别·人员计数
workflower1 小时前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿1 小时前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
张较瘦_2 小时前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能