PaddleOCR Android demo替换最新识别库和模型

PaddleOCR的官方Android demo使用的PaddleLite版本目前是2.10,使用的paddle_lite_opt优化后的模型是v2版本。目前最新的PaddleLite版本是2.13RC,最新的模型版本是v4,据说有比较大提升。那么如何在官方demo中体验最新版本的PaddleLite识别库和v4模型呢?

下载PaddleLite

可以直接下载官方编译好的:github.com/PaddlePaddl...

下载后,解压,放到Android demo的app module根目录下,文件夹重命名为PaddleLite(与demo原编译脚本运行后自动生成的文件夹同名)。目录结构为:

如果你想使用低于2.13的版本的PaddleLite,那么需要注意的是,只支持python == 2.7\3.5\3.6\3.7。github.com/PaddlePaddl...

安装paddlelite工具

pip install paddlelite==2.13rc0

需要注意的是,这一步需要安装跟上述PaddleLite同版本的命令行工具,来优化模型。如果使用其他版本的paddlelite工具优化出来的模型,使用时会报错"Error: This model is not supported, because kernel for 'io_copy' is not supported by Paddle-Lite."

由于我上述下载的PaddleLite推理库的版本是2.13RC,所以这里我就安装2.13rc0版本的paddlelite。

优化模型

从这里下载最新的模型:github.com/PaddlePaddl...

需要下载三个模型,分别是文本检测模型、文本识别模型、文本方向分类模型。都各自下载最新的版本。注意下载的是"推理模型",而不是"训练模型"或"nb模型"。

下载之后,使用上述通过pip安装的paddlelite工具进行优化:

paddle_lite_opt --model_file=./inference.pdmodel --param_file=./inference.pdiparams --optimize_out=./output --valid_targets=arm --optimize_out_type=naive_buffer

运行完成后,会得到一个nb文件。对上述下载的文本检测模型、文本识别模型、文本方向分类模型分别执行,得到三个nb文件。将这三个nb文件,放到Android demo的asserts文件夹中替换原始的三个模型文件。

修改CMakeLists.txt

查找文件中对${PaddleLite\_DIR}的使用,注释掉新版PaddleLite中不再存在的文件对应的add\_custom\_command,再修改libpaddle\_light\_api\_shared.so文件的路径。

收尾

修改Android demo中的MiniActivity.java/Predictor.java/string.xml中,对模型文件或者模型文件夹的定义,使其与新的模型文件相匹配

运行

完美运行

参考文献

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

相关推荐
007tg1 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报1 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe992 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………3 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房3 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck4 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭5 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库5 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别
Yingjun Mo5 小时前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论