PaddleOCR Android demo替换最新识别库和模型

PaddleOCR的官方Android demo使用的PaddleLite版本目前是2.10,使用的paddle_lite_opt优化后的模型是v2版本。目前最新的PaddleLite版本是2.13RC,最新的模型版本是v4,据说有比较大提升。那么如何在官方demo中体验最新版本的PaddleLite识别库和v4模型呢?

下载PaddleLite

可以直接下载官方编译好的:github.com/PaddlePaddl...

下载后,解压,放到Android demo的app module根目录下,文件夹重命名为PaddleLite(与demo原编译脚本运行后自动生成的文件夹同名)。目录结构为:

如果你想使用低于2.13的版本的PaddleLite,那么需要注意的是,只支持python == 2.7\3.5\3.6\3.7。github.com/PaddlePaddl...

安装paddlelite工具

pip install paddlelite==2.13rc0

需要注意的是,这一步需要安装跟上述PaddleLite同版本的命令行工具,来优化模型。如果使用其他版本的paddlelite工具优化出来的模型,使用时会报错"Error: This model is not supported, because kernel for 'io_copy' is not supported by Paddle-Lite."

由于我上述下载的PaddleLite推理库的版本是2.13RC,所以这里我就安装2.13rc0版本的paddlelite。

优化模型

从这里下载最新的模型:github.com/PaddlePaddl...

需要下载三个模型,分别是文本检测模型、文本识别模型、文本方向分类模型。都各自下载最新的版本。注意下载的是"推理模型",而不是"训练模型"或"nb模型"。

下载之后,使用上述通过pip安装的paddlelite工具进行优化:

paddle_lite_opt --model_file=./inference.pdmodel --param_file=./inference.pdiparams --optimize_out=./output --valid_targets=arm --optimize_out_type=naive_buffer

运行完成后,会得到一个nb文件。对上述下载的文本检测模型、文本识别模型、文本方向分类模型分别执行,得到三个nb文件。将这三个nb文件,放到Android demo的asserts文件夹中替换原始的三个模型文件。

修改CMakeLists.txt

查找文件中对${PaddleLite\_DIR}的使用,注释掉新版PaddleLite中不再存在的文件对应的add\_custom\_command,再修改libpaddle\_light\_api\_shared.so文件的路径。

收尾

修改Android demo中的MiniActivity.java/Predictor.java/string.xml中,对模型文件或者模型文件夹的定义,使其与新的模型文件相匹配

运行

完美运行

参考文献

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

github.com/PaddlePaddl...

相关推荐
武汉唯众智创1 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao12 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子22 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人27 分钟前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者30 分钟前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco43 分钟前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos
小杨4041 小时前
python入门系列二十(peewee)
人工智能·python·pycharm
IT古董1 小时前
【漫话机器学习系列】225.张量(Tensors)
人工智能
深圳市快瞳科技有限公司1 小时前
当OCR遇上“幻觉”:如何让AI更靠谱地“看懂”文字?
人工智能·ai·ocr