源代码级一步一步编写自己的Assistant,GPTs 和 Assistants API 推出,AI Agent,chatgpt

先简单介绍,然后直接上源代码。

The Assistants API 允许您在自己的应用程序中构建 AI 助手。助手具有指令,并可以利用模型、工具和知识来回应用户的查询。助手 API 目前支持三种类型的工具:代码解释器、检索和函数调用。在未来,我们计划发布更多由 OpenAI 构建的工具,并允许您在我们的平台上提供自己的工具。

您可以使用助手 API 沙盒或按照本指南中概述的逐步集成方法,探索助手 API 的功能。从高层次来看,助手 API 的典型集成流程如下:

  1. 在 API 中创建助手(assistant),定义其自定义指令并选择一个模型。如果需要,启用代码解释器、检索和函数调用等工具。
  2. 当用户开始对话时,在 API 中创建一个thread(会话)。
  3. 随着用户提问,将消息添加到thread(会话)中。
  4. 在thread(会话)上运行(run)助手以触发响应。这会自动调用相关的工具。

助手 API 目前处于测试阶段,我们正在积极添加更多功能。请在我们的开发者论坛上分享您的反馈!

此入门指南逐步介绍了创建和运行一个使用代码解释器的助手的关键步骤。

智增增API地址:gpt.zhizengzeng.com/#/login

先从这里拿到key,github地址:github.com/xing61/xiao...

  • 创建一个assistant
ini 复制代码
API_SECRET_KEY = "你的智增增获取的api_key";
BASE_URL = "https://flag.smarttrot.com/v1/"; #智增增的base_url

# assistant
def create_assistant():
    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    assistant = client.beta.assistants.create(
        name="Math Tutor",
        instructions="You are a personal math tutor. Write and run code to answer math questions.",
        tools=[{"type": "code_interpreter"}],
        model="gpt-4-1106-preview"
    )
    print(assistant)
  • 创建一个thread(会话)
ini 复制代码
API_SECRET_KEY = "你的智增增获取的api_key";
BASE_URL = "https://flag.smarttrot.com/v1/"; #智增增的base_url

# thread
def create_thread():
    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    thread = client.beta.threads.create()
    print(thread)
  • add a message
ini 复制代码
API_SECRET_KEY = "你的智增增获取的api_key";
BASE_URL = "https://flag.smarttrot.com/v1/"; #智增增的base_url

def add_message(thread_id):
    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    message = client.beta.threads.messages.create(
        thread_id=thread_id, # 助手的会话id要从上一步获取得到
        role="user",
        content="I need to solve the equation `3x + 11 = 14`. Can you help me?"
    )
    print(message)
  • run这个助手
ini 复制代码
API_SECRET_KEY = "你的智增增获取的api_key";
BASE_URL = "https://flag.smarttrot.com/v1/"; #智增增的base_url

# run a assistant
def run(assistant_id, thread_id):
    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    run = client.beta.threads.runs.create(
        thread_id=thread_id,  # 助手的会话id要从上一步获取得到
        assistant_id=assistant_id, # 助手的id要从上一步获取得到
        instructions="Please address the user as Jane Doe. The user has a premium account."
    )
    print(run)
  • 检查是否run完成

要注意的是:

上一步提交完run任务之后,会话是需要一段时间来执行的。

也就是说助手是否执行完成,是需要有一个判断的

这里通过返回数据的:status=completed来进行判断

ini 复制代码
API_SECRET_KEY = "你的智增增获取的api_key";
BASE_URL = "https://flag.smarttrot.com/v1/"; #智增增的base_url

# retrieve,检查执行状态
def retrieve(thread_id, run_id):
    print("retrieve");
    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    run = client.beta.threads.runs.retrieve(
        thread_id=thread_id, # 助手的会话id要从上一步获取得到
        run_id=run_id  # 助手的run id要从上一步获取得到
    )
    print(run)
  • 获取助手的回答
ini 复制代码
API_SECRET_KEY = "你的智增增获取的api_key";
BASE_URL = "https://flag.smarttrot.com/v1/"; #智增增的base_url

# 获取助手的回答
# Once the Run completes, you can retrieve the Messages added by the Assistant to the Thread.
def list_messages(thread_id):
    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    messages = client.beta.threads.messages.list(
        thread_id=thread_id  # 助手的会话id要从上一步获取得到
    )
    print(messages)

恭喜,助手搭建告成!!

你就用指定模型和工具建立了一个自己的助手了

可以去发布赚钱了

相关推荐
hunteritself14 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
Doker 多克16 小时前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
曼城周杰伦20 小时前
自然语言处理:第六十二章 KAG 超越GraphRAG的图谱框架
人工智能·pytorch·神经网络·自然语言处理·chatgpt·nlp·gpt-3
爱技术的小伙子1 天前
【ChatGPT】ChatGPT在多领域知识整合中的应用
chatgpt
学习前端的小z1 天前
【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成
人工智能·gpt·chatgpt·aigc
段传涛2 天前
LLM( Large Language Models)典型应用介绍 1 -ChatGPT Large language models
人工智能·语言模型·chatgpt
起名字真南2 天前
【C++】深入理解 C++ 中的继承进阶:多继承、菱形继承及其解决方案
java·jvm·c++·chatgpt·aigc
爱技术的小伙子2 天前
【ChatGPT】如何通过角色扮演让ChatGPT回答更贴合实际场景
人工智能·chatgpt
在人间负债^2 天前
VRT: 关于视频修复的模型
人工智能·python·学习·机器学习·chatgpt·音视频
AI小欧同学2 天前
【AIGC】ChatGPT提示词Prompt解析:情感分析,分手后还可以做朋友吗?
chatgpt·prompt·aigc