PP-ChatOCRv2、PP-TSv2、大模型半监督学习工具...PaddleX新特性等你来pick!

小A是一名刚刚毕业的算法工程师,有一天,他被老板安排了一个活,要对一批合同扫描件进行自动化信息抽取,输出结构化的分析报表。OCR问题不大,但是怎么进行批量的结构化信息抽取呢?小A陷入了苦苦思索...

小B是一名项目经理,最近他接手了一个紧急的AI项目,客户提供的数据很多,但是标注的样本很少,很难达到客户要求的精度指标。而如果大量标注数据,时间上根本来不及。deadline一天天临近,小B整天愁眉苦脸...

小C是一家小型AI服务提供商的老板,长期做项目下来,他总觉得需要沉淀一套标准化的工具,快速应对多种多样的场景需求,尤其要满足多种复杂环境的模型部署,但公司的研发力量被项目缠身,陷入了恶性循环。小C一筹莫展...

俗话说的好,方法总比困难多,新版本的PaddleX有望解决小A、小B和小C的燃眉之急!

转眼间,距离飞桨AI套件PaddleX的正式发布Run in PaddleX!四步搞定10+任务场景36个精选产业模型开发与部署!已经过去了两个月。两个月期间,PaddleX团队快速响应AI落地的新需求、新功能,以期能在今天新内容发布中给大家交一个满意的答卷!接下来,就让我们看一看PaddleX都带来了什么新内容吧!

四大更新内容速览

强大的大小模型结合特色工具

  • PP-ChatOCRv2: PP-OCR与文心一言 强强结合,支持1.5万+大字库解决生僻字、多页pdf、表格识别等难题,无需训练即可在20+场景实现关键信息抽取平均准确率80%以上。
  • PP-TSv2: 支持时序预测时序异常检测任务。在用电负荷预测、预测性维护等多场景任务自适应寻优!电力场景预测误差降低20%以上,设备异常检测场景召回率提升5%。
  • 大模型半监督学习工具: 借助少量有标注数据和大量无标注数据,大大提升模型的精度;在分类、检测、OCR识别3类任务的17个模型上,实现小模型精度提升10%~26%。

40+精选产业高精度模型库

新增RT-DETR-H、TimesNet_AD、PP-HGNetv2-B4等8个精选模型,扩充时序分类、时序异常检测等任务。PaddleX目前已覆盖目标检测、图像分割、3D、OCR、时序预测、图像识别系统、PDF转word等40+精选产业高精度模型库。

低代码工具箱全流程开发

新增数据格式转换、数据划分、评估指标说明等10+界面功能优化,工具箱/开发者双模式高低代码联动功能更丰富,布局更美观!

云端&本地端双平台按需使用

云端和Windows本地端 能力同步升级,双平台按需选择!AI Studio云端资源随处可达,实现24小时随处AI开发。为充分利用本地算力,可一键下载本地端软件,满足多样需求。小伙伴们还等什么,来AI Studio云端一键体验吧!这里偷偷爆个料,Linux离线版本地端距离发布很近了呦!

想和志同道合的开发者交流开发经验?想和PaddleX官方开发者交流?欢迎来PaddleX频道交流:aistudio.baidu.com/community/c...

接下来,让我们详细看一下更新内容吧!

新特性详解

强大的大小模型结合特色工具

PP-ChatOCRv2

相信大家对PP-ChatOCR的惊艳效果还有很深的印象(点击回顾PP-ChatOCR:基于文心大模型的通用图像关键信息抽取利器,开发提效50%!),现在,我们正式迎来了它的第2版。

PP-ChatOCRv2是一个融合了LLM大模型和OCR技术的通用文本图像智能分析系统,覆盖20+高频应用场景,支持5种 文本图像智能分析能力和部署,包括通用场景关键信息抽取(快递单、营业执照和机动车行驶证等)、复杂文档场景关键信息抽取(解决生僻字、特殊标点、多页PDF、表格等难点问题)、通用OCR、文档场景专用OCR、通用表格识别。此外针对垂类业务场景,也支持模型训练、微调和Prompt优化。

PP-ChatOCRv2 多场景识别效果PP-ChatOCRv2在PP-ChatOCR的基础上进一步升级,小模型+大模型串联逻辑不变,在通用信息抽取、复杂文档信息抽取、代码拓展性、基础功能完备四个方面做了更新。下面是v2的特性总结:

  • 场景丰富: 支持5种智能文本图像分析能力,覆盖20+高频应用场景,尤其针对复杂文档场景进行了专项优化。
  • 精准度高: 「PP-OCR」与「文心一言」强强结合,支持1.5万+大字库,解决生僻字、多页PDF、表格等难题,无需训练即可在20+场景关键信息抽取平均准确率80%以上。
  • 一键部署: 一键获取PP-ChatOCRv2离线部署SDK,助力企业快速实现工程落地。
  • 便捷开发: 针对垂类业务场景,通过简单点击UI界面按钮,可完成Prompt优化、模型训练和微调。

立即在线体验:

aistudio.baidu.com/projectdeta...

PP-TSv2

说到时序处理,大家一定还记得PaddleX重磅推出的PP-TS(点击回顾PP-TS基于启发式搜索和集成方法的时序预测模型,使预测更加准确),现在让我们看看v2带来了什么新特性。

PP-TSv2 电力和交通场景落地效果

  • 场景丰富: 支持时序预测时序异常检测两大通用任务,在用电负荷预测、预测性维护、能耗分析、交流流量预估等场景中有重要应用价值。
  • 精准度高: 多场景任务自适应寻优。时序预测,在电力场景预测误差降低20%以上;时序异常检测,在设备异常监控场景相同精度下,召回提升约5%。
  • 便捷开发: 简单点击UI界面即可完数据的预处理一键化去重,数据格式转化以及划分,高精度的自定义训练,研发成本低。
  • 一键部署: 一键获取PP-TSv2离线部署SDK和服务化部署,助力企业快速工程落地。

立即在线体验:

aistudio.baidu.com/projectdeta...

大模型半监督学习工具

不知道大家有没有遇到过数据标注成本高、周期长的困扰,有没有那么一种可能,精心标注少量的数据,配合大量的无标注数据,就能达到比肩全量标注的模型精度呢?是的,PaddleX就带来了这样一款提效神器------大模型半监督学习工具。

大模型半监督学习工具(LMSSL)利用视觉大模型的强大特征表征能力和PaddleX的特色半监督学习方法,在少量有标注数据和大量无标注数据的混合数据上学习到更好的特征,从而得到超高精度的大模型;该工具还内置了蒸馏和微调小模型的方法,进一步可以得到精度更高的小模型。

为了验证该工具的有效性,我们测试了其在公开数据集的指标。最终,该工具刷新了图像分类-10%ImageNet、目标检测-10%COCO的半监督学习SOTA精度。目前,该工具支持图像分类、目标检测、OCR识别三类视觉任务17个模型,大家无需关心细节,只需提供更多无标注数据,点击两次按钮,即可得到高精度的大模型和小模型。下面列举了使用该工具后,不同场景中大模型和小模型的精度提升情况。

图像分类不同场景和指标提升情况

目标检测不同场景和指标题提升情况

立即在线体验:

以上这些特色工具有没有让大家眼前一亮呢?未来PaddleX将持续推出更多的特色工具,欢迎保持关注哦~

对这些特色工具很感兴趣,想了解得更深入一些?没问题,关注本公众号,后面陆续会有针对性讲解的文章~

40+精选产业高精度模型库

本次更新中,图像分类、目标检测任务方向分别新增了3个精选模型,为大家带来了更多的精度-速度权衡选择。另外,额外覆盖了时序异常检测、时序分类两个任务方向,各自新增一个精选模型。这些精选模型个个都很能打,有下面的实测数据为证。大家的模型选型又有新的选项啦!

PaddleX 本次发版新增模型list

PaddleX已支持的40+算法模型,可参考该链接:

aistudio.baidu.com/intro/paddl...

后续,PaddleX将持续扩大开发者心心念念的实例分割模型、LLM模型等,欢迎大家进入文章底部的交流频道,反馈对新模型的需求!

低代码工具箱全流程开发

新版PaddleX正式发布以来,用户对工具箱/开发者双模式高低代码联动的开发方式大家赞赏。PaddleX为了做好极致的AI开发全流程, 这次更新增加了数据分析工具、数据格式转换工具、数据划分工具、评估指标说明等10+功能,低代码工具箱模式功能更丰富,布局更美观!

云端&本地端双平台按需使用

云端AI Studio平台,PaddleX可以通过项目大厅和模型库两个入口使用。

Windows本地端PaddleX2.2.0版本也正式发布啦,除特色工具外,云端所有能力实现完全同步。一键下载安装windows本地端,即可完成模型开发全流程。

结语

最后,稍微总结一下:

PaddleX是面向国内外主流AI硬件的,全流程、高效率的飞桨精选AI模型的一站式AI开发套件。PaddleX的使命是助力AI技术快速落地,愿景是使人人成为AI Developer!

在本次更新中,PaddleX带来了强大的大小模型结合特色工具、40+精选产业高精度模型库、低代码工具箱全流程开发、云端&本地端双平台按需使用等特性,希望能给大家带来更大的AI开发效率提升和更好的产品体验!

目前PaddleX依然处在快速迭代中,欢迎大家试用和指正!比心~

添加AI Studio飞桨AI套件官方频道,和大家一起讨论吧,传送门:

aistudio.baidu.com/community/c...

相关推荐
蓝天星空8 分钟前
Python调用open ai接口
人工智能·python
睡觉狂魔er9 分钟前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
scan72432 分钟前
LILAC采样算法
人工智能·算法·机器学习
leaf_leaves_leaf35 分钟前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零140 分钟前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
爱喝热水的呀哈喽1 小时前
《机器学习》支持向量机
人工智能·决策树·机器学习
minstbe1 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
月眠老师1 小时前
AI在生活各处的利与弊
人工智能
四口鲸鱼爱吃盐1 小时前
Pytorch | 从零构建MobileNet对CIFAR10进行分类
人工智能·pytorch·分类
苏言の狗1 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习