Python数据处理:如何自动插入相关数据到工作表中

复制代码
    def price_insert_15_20_30(self,df,column):
        df = df.rename(columns={column:'sku'})
        data = pd.read_excel(r'C:\Users\wangkejun\Desktop\orderadjust\tempdata\caculatetemp.xlsx')
        data['sku'] = df['sku']
        columns = list(data.columns)
        data = pd.merge(data,df,on=['sku'],how='left',suffixes=['','_r'])

        data['平台佣金率'] = data.apply(lambda x:x['平台佣金率补充'] if pd.notna(x['平台佣金率补充']) else x['平台佣金率'],axis=1)
        data['采购价'] = data.apply(lambda x:x['采购价补充'] if pd.notna(x['采购价补充']) else x['采购价'],axis=1)
        data['实重'] = data.apply(lambda x:x['计费重补充'] if pd.notna(x['计费重补充']) else x['实重'],axis=1)


        data = data.loc[:,columns]
        df = data.loc[:,['sku']]
        for i in [0.15,0.2,0.3]:
            datatemp = data.copy()
            datatemp['毛利率'] = i
            datatemp = datatemp.apply(self.calculate_price, axis=1)
            title = f'{i*100}%'
            datatemp = datatemp.rename(columns = {'price':title})
            datatemp = datatemp.loc[:,['sku','平台佣金率', '采购价', '计费重',title]]
            df = pd.merge(df,datatemp,how='left',on=['sku'])

        df = df.rename(columns={'sku':column})
        return df   
      
 # 费用相关数据
dfall['系统SKU'] = dfall['系统SKU'].astype('object')
dfbasicprice = pd.merge(dfall.loc[:,['系统SKU']],dfbasic,how='left',on=['系统SKU'])

dfbasicprice = dfbasicprice.dropna(subset=['系统SKU'])

dfbasicprice = caculate().price_insert_15_20_30(dfbasicprice,'系统SKU')

dfzongbiaojilu= dfbasicprice.loc[:, ['系统SKU', '平台佣金率', '采购价', '计费重']]
dfzongbiaojilu2= dfbasic.loc[:, ['系统SKU', '平台佣金率补充', '采购价补充', '计费重补充']]


merged_df = dfzongbiaojilu.merge(dfzongbiaojilu2, on='系统SKU')

        # 去除NaN值
merged_df = merged_df.dropna()

        # 插入数据到工作表
self.worksheetinsert(merged_df, number=1, worksheetid=excelsheet['总表新品数据记录表']) 

具体来说,你首先将 dfall['系统SKU'] 的数据类型更改为 'object',然后使用 pd.merge() 函数将 dfbasicdfall 进行左连接,基于共同的列 '系统SKU'。接下来,你删除了包含 NaN 值的行,并将结果保存在 dfbasicprice 中。

然后,你对 dfbasicprice 调用了 caculate().price_insert_15_20_30(dfbasicprice, '系统SKU'),并传入了参数 '系统SKU'。这应该是一个自定义的计算函数,根据传入的 DataFrame 和列名进行价格计算和插入操作。请确保该函数能够正常运行,并返回预期的结果。

接下来,你从 dfbasicpricedfbasic 中选择了特定的列,并分别保存在 dfzongbiaojiludfzongbiaojilu2 中。

最后,你使用 merge() 函数将 dfzongbiaojiludfzongbiaojilu2 基于列 '系统SKU' 进行合并,并保存在 merged_df 中。最后,你删除了包含 NaN 值的行,并将结果插入到工作表中

相关推荐
简单点好不好2 分钟前
大恒相机-mono12-python示例程序
开发语言·python·数码相机
后端小张23 分钟前
【JAVA 进阶】SpringAI人工智能框架深度解析:从理论到实战的企业级AI应用开发指南
java·开发语言·人工智能
麦烤楽鸡翅31 分钟前
小红书推荐系统(牛客)
java·python·算法·秋招·春招·牛客·面试算法题
MATLAB代码顾问36 分钟前
MATLAB实现CNN(卷积神经网络)图像边缘识别
开发语言·matlab·cnn
FJW02081437 分钟前
Python函数
开发语言·python
屁股割了还要学38 分钟前
【C++进阶】STL-string的简单实现
c语言·开发语言·数据结构·c++·学习·考研
superlls1 小时前
(Java基础)集合框架继承体系
java·开发语言
ad钙奶长高高1 小时前
【C语言】原码反码补码详解
c语言·开发语言
mortimer1 小时前
如何解决 uv run 因网络问题导致的 Python 下载失败
python·github