Python数据处理:如何自动插入相关数据到工作表中

复制代码
    def price_insert_15_20_30(self,df,column):
        df = df.rename(columns={column:'sku'})
        data = pd.read_excel(r'C:\Users\wangkejun\Desktop\orderadjust\tempdata\caculatetemp.xlsx')
        data['sku'] = df['sku']
        columns = list(data.columns)
        data = pd.merge(data,df,on=['sku'],how='left',suffixes=['','_r'])

        data['平台佣金率'] = data.apply(lambda x:x['平台佣金率补充'] if pd.notna(x['平台佣金率补充']) else x['平台佣金率'],axis=1)
        data['采购价'] = data.apply(lambda x:x['采购价补充'] if pd.notna(x['采购价补充']) else x['采购价'],axis=1)
        data['实重'] = data.apply(lambda x:x['计费重补充'] if pd.notna(x['计费重补充']) else x['实重'],axis=1)


        data = data.loc[:,columns]
        df = data.loc[:,['sku']]
        for i in [0.15,0.2,0.3]:
            datatemp = data.copy()
            datatemp['毛利率'] = i
            datatemp = datatemp.apply(self.calculate_price, axis=1)
            title = f'{i*100}%'
            datatemp = datatemp.rename(columns = {'price':title})
            datatemp = datatemp.loc[:,['sku','平台佣金率', '采购价', '计费重',title]]
            df = pd.merge(df,datatemp,how='left',on=['sku'])

        df = df.rename(columns={'sku':column})
        return df   
      
 # 费用相关数据
dfall['系统SKU'] = dfall['系统SKU'].astype('object')
dfbasicprice = pd.merge(dfall.loc[:,['系统SKU']],dfbasic,how='left',on=['系统SKU'])

dfbasicprice = dfbasicprice.dropna(subset=['系统SKU'])

dfbasicprice = caculate().price_insert_15_20_30(dfbasicprice,'系统SKU')

dfzongbiaojilu= dfbasicprice.loc[:, ['系统SKU', '平台佣金率', '采购价', '计费重']]
dfzongbiaojilu2= dfbasic.loc[:, ['系统SKU', '平台佣金率补充', '采购价补充', '计费重补充']]


merged_df = dfzongbiaojilu.merge(dfzongbiaojilu2, on='系统SKU')

        # 去除NaN值
merged_df = merged_df.dropna()

        # 插入数据到工作表
self.worksheetinsert(merged_df, number=1, worksheetid=excelsheet['总表新品数据记录表']) 

具体来说,你首先将 dfall['系统SKU'] 的数据类型更改为 'object',然后使用 pd.merge() 函数将 dfbasicdfall 进行左连接,基于共同的列 '系统SKU'。接下来,你删除了包含 NaN 值的行,并将结果保存在 dfbasicprice 中。

然后,你对 dfbasicprice 调用了 caculate().price_insert_15_20_30(dfbasicprice, '系统SKU'),并传入了参数 '系统SKU'。这应该是一个自定义的计算函数,根据传入的 DataFrame 和列名进行价格计算和插入操作。请确保该函数能够正常运行,并返回预期的结果。

接下来,你从 dfbasicpricedfbasic 中选择了特定的列,并分别保存在 dfzongbiaojiludfzongbiaojilu2 中。

最后,你使用 merge() 函数将 dfzongbiaojiludfzongbiaojilu2 基于列 '系统SKU' 进行合并,并保存在 merged_df 中。最后,你删除了包含 NaN 值的行,并将结果插入到工作表中

相关推荐
念念01072 小时前
数学建模竞赛中评价类相关模型
python·数学建模·因子分析·topsis
四维碎片2 小时前
【Qt】线程池与全局信号实现异步协作
开发语言·qt·ui·visual studio
IT码农-爱吃辣条2 小时前
Three.js 初级教程大全
开发语言·javascript·three.js
云天徽上3 小时前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
☺����3 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
染翰3 小时前
lua入门以及在Redis中的应用
开发语言·redis·lua
王者鳜錸3 小时前
PYTHON让繁琐的工作自动化-函数
开发语言·python·自动化
兔老大RabbitMQ4 小时前
git pull origin master失败
java·开发语言·git
tt5555555555554 小时前
C/C++嵌入式笔试核心考点精解
c语言·开发语言·c++
xiao助阵4 小时前
python实现梅尔频率倒谱系数(MFCC) 除了傅里叶变换和离散余弦变换
开发语言·python