Python利用pandas进行数据合并

当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具。它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起来。

merge函数的基本语法如下:

复制代码
pd.merge(
    left,  # 要合并的左侧 DataFrame
    right,  # 要合并的右侧 DataFrame
    how='inner',  # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
    on=None,  # 用于连接的列名,必须存在于左侧和右侧 DataFrame 中
    left_on=None,  # 左侧 DataFrame 用于连接的列名
    right_on=None,  # 右侧 DataFrame 用于连接的列名
    left_index=False,  # 如果为 True,则使用左侧 DataFrame 的索引作为连接键
    right_index=False,  # 如果为 True,则使用右侧 DataFrame 的索引作为连接键
    suffixes=('_x', '_y'),  # 字符串后缀,用于重叠列名的处理
    sort=False,  # 根据连接键对合并后的数据进行排序
    copy=True,  # 如果为 False,可以提高性能,但是在某些情况下会修改原始数据
)

基本用法

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

指定不同的列名

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

处理重复列名,相同列名加后缀

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

根据索引进行合并

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

开启一列标记列,标记数据来源

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

完整代码

复制代码
import pandas as pd

# 读取两个 Excel 文件
left_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx',sheet_name='Sheet2')
right_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据2.xlsx',sheet_name='Sheet2')

#基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

#指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

#处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

#根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

#开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

数据一:

数据二:

相关推荐
AI数据皮皮侠9 分钟前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
wu_jing_sheng01 小时前
Python中使用HTTP 206状态码实现大文件下载的完整指南
开发语言·前端·python
程序员大雄学编程1 小时前
「用Python来学微积分」2. 函数图像的变换
python·数学·微积分
Q26433650232 小时前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
unicrom_深圳市由你创科技2 小时前
工业上位机,用Python+Qt还是C#+WPF?
python·qt·c#
njsgcs2 小时前
json转excel python pd
python·json·excel·pd
一晌小贪欢2 小时前
Python爬虫第7课:多线程与异步爬虫技术
开发语言·爬虫·python·网络爬虫·python爬虫·python3
yanxing.D5 小时前
OpenCV轻松入门_面向python(第六章 阈值处理)
人工智能·python·opencv·计算机视觉
JJJJ_iii6 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
Python图像识别9 小时前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo