Python利用pandas进行数据合并

当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具。它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起来。

merge函数的基本语法如下:

复制代码
pd.merge(
    left,  # 要合并的左侧 DataFrame
    right,  # 要合并的右侧 DataFrame
    how='inner',  # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
    on=None,  # 用于连接的列名,必须存在于左侧和右侧 DataFrame 中
    left_on=None,  # 左侧 DataFrame 用于连接的列名
    right_on=None,  # 右侧 DataFrame 用于连接的列名
    left_index=False,  # 如果为 True,则使用左侧 DataFrame 的索引作为连接键
    right_index=False,  # 如果为 True,则使用右侧 DataFrame 的索引作为连接键
    suffixes=('_x', '_y'),  # 字符串后缀,用于重叠列名的处理
    sort=False,  # 根据连接键对合并后的数据进行排序
    copy=True,  # 如果为 False,可以提高性能,但是在某些情况下会修改原始数据
)

基本用法

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

指定不同的列名

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

处理重复列名,相同列名加后缀

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

根据索引进行合并

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

开启一列标记列,标记数据来源

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

完整代码

复制代码
import pandas as pd

# 读取两个 Excel 文件
left_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx',sheet_name='Sheet2')
right_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据2.xlsx',sheet_name='Sheet2')

#基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

#指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

#处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

#根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

#开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

数据一:

数据二:

相关推荐
写代码的【黑咖啡】7 分钟前
探索 Python 中的 Vaex:高效处理大规模数据的新选择
开发语言·python
Lun3866buzha10 分钟前
自动扶梯与楼梯识别_yolo11-C3k2-SCcConv改进实现
python
JavaLearnerZGQ14 分钟前
1、Java中的线程
java·开发语言·python
@zulnger22 分钟前
python 学习笔记(多线程和多进程)
笔记·python·学习
Master_清欢32 分钟前
jupyter新增行数
ide·python·jupyter
羸弱的穷酸书生1 小时前
python中各种数据类型的转换方法
python
D___H1 小时前
Part8_编写自己的解释器
python
TDengine (老段)1 小时前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
田里的水稻2 小时前
C++_python_相互之间的包含调用方法
c++·chrome·python
2501_941870562 小时前
面向微服务熔断与流量削峰策略的互联网系统稳定性设计与多语言工程实践分享
开发语言·python