Python利用pandas进行数据合并

当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具。它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起来。

merge函数的基本语法如下:

复制代码
pd.merge(
    left,  # 要合并的左侧 DataFrame
    right,  # 要合并的右侧 DataFrame
    how='inner',  # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
    on=None,  # 用于连接的列名,必须存在于左侧和右侧 DataFrame 中
    left_on=None,  # 左侧 DataFrame 用于连接的列名
    right_on=None,  # 右侧 DataFrame 用于连接的列名
    left_index=False,  # 如果为 True,则使用左侧 DataFrame 的索引作为连接键
    right_index=False,  # 如果为 True,则使用右侧 DataFrame 的索引作为连接键
    suffixes=('_x', '_y'),  # 字符串后缀,用于重叠列名的处理
    sort=False,  # 根据连接键对合并后的数据进行排序
    copy=True,  # 如果为 False,可以提高性能,但是在某些情况下会修改原始数据
)

基本用法

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

指定不同的列名

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

处理重复列名,相同列名加后缀

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

根据索引进行合并

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

开启一列标记列,标记数据来源

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

完整代码

复制代码
import pandas as pd

# 读取两个 Excel 文件
left_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx',sheet_name='Sheet2')
right_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据2.xlsx',sheet_name='Sheet2')

#基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

#指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

#处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

#根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

#开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

数据一:

数据二:

相关推荐
小白学大数据15 分钟前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman91116 分钟前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路19 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼1 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷3 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者5 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
丕羽10 小时前
【Pytorch】基本语法
人工智能·pytorch·python
bryant_meng10 小时前
【python】Distribution
开发语言·python·分布函数·常用分布