Python利用pandas进行数据合并

当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具。它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起来。

merge函数的基本语法如下:

复制代码
pd.merge(
    left,  # 要合并的左侧 DataFrame
    right,  # 要合并的右侧 DataFrame
    how='inner',  # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
    on=None,  # 用于连接的列名,必须存在于左侧和右侧 DataFrame 中
    left_on=None,  # 左侧 DataFrame 用于连接的列名
    right_on=None,  # 右侧 DataFrame 用于连接的列名
    left_index=False,  # 如果为 True,则使用左侧 DataFrame 的索引作为连接键
    right_index=False,  # 如果为 True,则使用右侧 DataFrame 的索引作为连接键
    suffixes=('_x', '_y'),  # 字符串后缀,用于重叠列名的处理
    sort=False,  # 根据连接键对合并后的数据进行排序
    copy=True,  # 如果为 False,可以提高性能,但是在某些情况下会修改原始数据
)

基本用法

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

指定不同的列名

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

处理重复列名,相同列名加后缀

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

根据索引进行合并

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

开启一列标记列,标记数据来源

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

完整代码

复制代码
import pandas as pd

# 读取两个 Excel 文件
left_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx',sheet_name='Sheet2')
right_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据2.xlsx',sheet_name='Sheet2')

#基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

#指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

#处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

#根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

#开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

数据一:

数据二:

相关推荐
vx_BS8133031 分钟前
【直接可用源码免费送】计算机毕业设计精选项目03574基于Python的网上商城管理系统设计与实现:Java/PHP/Python/C#小程序、单片机、成品+文档源码支持定制
java·python·课程设计
gzxx2007sddx38 分钟前
windows vnpy运行过程及问题记录
python·量化·vnpy
算法_小学生1 小时前
LeetCode 热题 100(分享最简单易懂的Python代码!)
python·算法·leetcode
230万光年的思念1 小时前
【无标题】
python
shengli7221 小时前
机器学习与人工智能
jvm·数据库·python
2301_765703142 小时前
Python迭代器(Iterator)揭秘:for循环背后的故事
jvm·数据库·python
追风少年ii2 小时前
多组学扩展---分子对接pyrosetta
python·数据分析·空间·单细胞
2301_821369612 小时前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python
m0_561359672 小时前
使用Kivy开发跨平台的移动应用
jvm·数据库·python
编程火箭车3 小时前
04.第一个 Python 程序:Hello World 从编写到运行全解析
python·python第一个程序·python入门报错解决·python新手教程·hello world 程序·python终端运行·pycharm运行代码