Python利用pandas进行数据合并

当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具。它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起来。

merge函数的基本语法如下:

复制代码
pd.merge(
    left,  # 要合并的左侧 DataFrame
    right,  # 要合并的右侧 DataFrame
    how='inner',  # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
    on=None,  # 用于连接的列名,必须存在于左侧和右侧 DataFrame 中
    left_on=None,  # 左侧 DataFrame 用于连接的列名
    right_on=None,  # 右侧 DataFrame 用于连接的列名
    left_index=False,  # 如果为 True,则使用左侧 DataFrame 的索引作为连接键
    right_index=False,  # 如果为 True,则使用右侧 DataFrame 的索引作为连接键
    suffixes=('_x', '_y'),  # 字符串后缀,用于重叠列名的处理
    sort=False,  # 根据连接键对合并后的数据进行排序
    copy=True,  # 如果为 False,可以提高性能,但是在某些情况下会修改原始数据
)

基本用法

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

指定不同的列名

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

处理重复列名,相同列名加后缀

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

根据索引进行合并

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

开启一列标记列,标记数据来源

复制代码
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

完整代码

复制代码
import pandas as pd

# 读取两个 Excel 文件
left_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx',sheet_name='Sheet2')
right_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据2.xlsx',sheet_name='Sheet2')

#基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

#指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

#处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

#根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

#开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

数据一:

数据二:

相关推荐
川石课堂软件测试3 分钟前
全链路Controller压测负载均衡
android·运维·开发语言·python·mysql·adb·负载均衡
喜欢吃豆14 分钟前
微调高级推理大模型(COT)的综合指南:从理论到实践
人工智能·python·语言模型·大模型·微调·强化学习·推理模型
喜欢吃豆1 小时前
从指令遵循到价值对齐:医疗大语言模型的进阶优化、对齐与工具集成综合技术白皮书
人工智能·python·语言模型·自然语言处理·大模型·强化学习·constitutional
Access开发易登软件1 小时前
Access调用Azure翻译:轻松实现系统多语言切换
后端·python·低代码·flask·vba·access·access开发
yumgpkpm1 小时前
CMP (类Cloudera) CDP7.3(400次编译)在华为鲲鹏Aarch64(ARM)信创环境中的性能测试过程及命令
大数据·hive·hadoop·python·elasticsearch·spark·cloudera
代码小菜鸡6662 小时前
java 常用的一些数据结构
java·数据结构·python
CodeCraft Studio3 小时前
Excel处理控件Aspose.Cells教程:使用 Python 将 HTML 转换为 Excel
python·html·excel·aspose·aspose.cells·html转excel
王中阳Go3 小时前
Python 的 PyPy 能追上 Go 的性能吗?
后端·python·go
Goboy3 小时前
控制仙术流程 - 抉择与循环的艺术
后端·python
麦麦大数据4 小时前
F024 vue+flask电影知识图谱推荐系统vue+neo4j +python实现
vue.js·python·flask·知识图谱·推荐算法·电影推荐