import librosa
import numpy as np
import utils
import torch
import torch.nn.functional as F
from matplotlib import pyplot as plt
from torchvision.models.feature_extraction import create_feature_extractor
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def extract_mbe(_y, _sr, _nfft, _nb_mel):
#梅尔频谱
spec = librosa.core.spectrum._spectrogram(y=_y, n_fft=_nfft, hop_length=_nfft // 2, power=1)[0]
mel_basis = librosa.filters.mel(sr=_sr, n_fft=_nfft, n_mels=_nb_mel)
mel_spec = np.log(np.dot(mel_basis, spec).T)
return mel_spec #最后必须是[frames, dimensions]
def preprocess_data(X, seq_len, nb_ch):
# split into sequences
X = utils.split_in_seqs(X, seq_len)
X = utils.split_multi_channels(X, nb_ch)
# Convert to PyTorch tensors
X = torch.Tensor(X)
X = X.permute(0,1,3,2) #x形状为[709,2,40,256],【总样本数,通道数,特征维度,像素宽度】
return X
# 提取梅尔频谱特征
audio_path = "b093.wav"
y, sr = librosa.load(audio_path, sr=44100)
mel = extract_mbe(y, sr, 2048, 64)
value = preprocess_data(mel, 256, 1).to(device) #value 为输入模型的样本特征
features = {"cnn1": '1', "cnn2": '2', "cnn3": '3', "cnn4": '4', "cnn5": '5', "cnn6": '6'}
model = torch.load(f'best_model_2.pth')
feature_extractor = create_feature_extractor(model, return_nodes=features)
out = feature_extractor(value)
layer = "3"
out = torch.cat((out[layer][0], out[layer][1]), dim=1)
out = out.unsqueeze(0)
out = F.interpolate(out, size=(470, 64), mode='bilinear', align_corners=False)
out = out.squeeze(0) .permute(2, 0, 1) #[128, 256, 64]->[64, 128, 256]->[纵, 值, 横]
plt.imshow(out.sum(1).detach().cpu().numpy(), origin='lower')
plt.show()
神经网络中间层特征图可视化(输入为音频)
孜孜不倦fly2023-11-15 12:41
相关推荐
巴里巴气36 分钟前
安装GPU版本的Pytorch「、皓子~1 小时前
后台管理系统的诞生 - 利用AI 1天完成整个后台管理系统的微服务后端+前端说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的抖音渠道力拓展与多渠道利润增长研究笑衬人心。1 小时前
初学Spring AI 笔记luofeiju1 小时前
RGB下的色彩变换:用线性代数解构色彩世界测试者家园2 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器张较瘦_2 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建大模型真好玩2 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战feiyangqingyun2 小时前
Qt音视频开发技巧/推流带旋转角度/rtsprtmp推流/保存文件到MP4/拉流解析旋转角度Baihai_IDP2 小时前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原