Python实现WOA智能鲸鱼优化算法优化卷积神经网络回归模型(CNN回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化CNN回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

|--------|----------|--------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建WOA智能鲸鱼优化算法优化CNN回归模型

主要使用WOA智能鲸鱼优化算法优化CNN回归算法,用于目标回归。

6.1 WOA智能鲸鱼优化算法寻找的最优参数

最优参数:

6.2 最优参数值构建模型

|--------|----------|----------------------------|
| 编号 | 模型名称 | 参数 |
| 1 | CNN回归模型 | units=best_units |
| 2 | CNN回归模型 | epochs=best_epochs |

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

|----------|----------|-----------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| CNN回归模型 | R方 | 0.9233 |
| CNN回归模型 | 均方误差 | 3001.8962 |
| CNN回归模型 | 可解释方差值 | 0.9234 |
| CNN回归模型 | 平均绝对误差 | 42.2745 |

从上表可以看出,R方0.9233,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。

8.结论与展望

综上所述,本文采用了WOA智能鲸鱼优化算法寻找CNN回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

python 复制代码
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/1bfGtGMDahOWnlk7ssXdFYw 
提取码:ya8i

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


相关推荐
Iridescent112111 小时前
Iridescent:Day33
python
EchoL、11 小时前
【论文阅读】HiDDeN:Hiding Data With Deep Networks
论文阅读·笔记·机器学习
傻啦嘿哟11 小时前
Python爬虫进阶:反爬机制突破与数据存储实战指南
开发语言·爬虫·python
2301_7644413311 小时前
基于Streamlit构建的风水命理计算器
开发语言·python
@Mr Wang11 小时前
云服务器之使用jupyter运行ipynb文件
服务器·python·jupyter·notebook
Python私教11 小时前
Jupyter是什么?如何安装使用?
ide·python·jupyter
胡伯来了11 小时前
08 Transformers - 微调
人工智能·深度学习·机器学习·transformer·transformers
Salt_072811 小时前
DAY 42 图像数据与显存
人工智能·python·机器学习
q_302381955611 小时前
双能突围!能源高效型模型压缩+碳足迹追踪,解锁数据中心与农业AI新价值
人工智能·python·深度学习·能源·课程设计·ai编程
byzh_rc11 小时前
[模式识别-从入门到入土] 高斯混合模型
人工智能·机器学习·支持向量机