【机器学习7】优化算法

1 有监督学习的损失函数

1.1 分类问题

对二分类问题, Y={1,−1}, 我们希望sign f(xi,θ)=yi, 最自然的损失函数是0-1损失,

函数定义 特点
0-1损失函数 非凸、非光滑,很难直接对该函数进行优化
Hinge损失函数 当fy≥1时, 该函数不对其做任何惩罚。 Hinge损失在fy=1处不可导, 因此不能用梯度下降法进行优化, 而是用次梯度下降法
Logistic损失函数 该损失函数对所有的样本点都有所惩罚, 因此对异常值相对更敏感一些
交叉熵损失函数

1.2回归问题

希望 , 最常用的损失函数是平方损失函数

函数定义 特点
平方损失函数 对异常点比较敏感
绝对损失函数 在f=y处无法求导数
Huber损失函数

2 梯度下降法

梯度下降算法发展过程

3 L1正则化与稀疏性

稀疏性,就是模型中的很多参数为0,相当于对模型进行了特征选择,只留下了重要的特征。提高了模型的泛化能力,降低了过拟合的可能。

为什么L1正则化能让模型具有稀疏性?

3.1 从解空间形状来看

黄色的部分是L2和L1正则项约束后的解空间, 绿色的等高线是凸优化问题中目标函数的等高线,L2正则项约束后的解空间是圆形, 而L1正则项约束的解空间是多边形。显然, 多边形的解空间更容易在尖角处与等高线碰撞出稀疏解。

3.2 从函数叠加来看

首先, 考虑加上L2正则化项, 目标函数变成L(w)+Cw2, 其函数曲线为黄色。此时, 最小值点在黄点处, 对应的w*的绝对值减小了, 但仍然非0。

然后, 考虑加上L1正则化项, 目标函数变成L(w)+C|w|, 其函数曲线为绿色。此时, 最小值点在红点处, 对应的w是0, 产生了稀疏性。

在一些在线梯度下降算法中, 往往会采用截断梯度法来产生稀疏性, 这同L1正则项产生稀疏性的原理是类似的。

3.3从贝叶斯实验来看

从贝叶斯的角度来理解L1正则化和L2正则化, 简单的解释是, L1正则化相当于对模型参数w引入了拉普拉斯先验, L2正则化相当于引入了高斯先验, 而拉普拉斯先验使参数为0的可能性更大。

相关推荐
月明长歌7 分钟前
【码道初阶】【LeetCode 110】平衡二叉树:如何用一个“Magic Number”将复杂度从O(N²)降为 O(N)?
linux·算法·leetcode
爱笑的眼睛119 分钟前
超越剪枝与量化:下一代AI模型压缩工具的技术演进与实践
java·人工智能·python·ai
yaoh.wang10 分钟前
力扣(LeetCode) 14: 最长公共前缀 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
历程里程碑17 分钟前
C++ 9 stack_queue:数据结构的核心奥秘
java·开发语言·数据结构·c++·windows·笔记·算法
t1987512828 分钟前
基于MATLAB的线性判别分析(LDA)降维算法实现方案
开发语言·算法·matlab
雨大王51234 分钟前
工业生产执行系统(MES)在汽车制造行业的应用案例
运维·人工智能
仰泳的熊猫38 分钟前
1108 Finding Average
数据结构·c++·算法·pat考试
数据堂官方账号39 分钟前
AI赋能工业4.0:数据堂一站式数据服务加速制造智能化落地
人工智能·机器人·数据集·人机交互·数据采集·数据标注·工业制造
老赵聊算法、大模型备案44 分钟前
2025 年 12 月北京市生成式人工智能服务备案分析:政务场景再扩容,合规生态更聚焦
人工智能·算法·microsoft·aigc·政务
liuyao_xianhui1 小时前
山脉数组的峰顶索引_优选算法_二分查找法
算法