【机器学习7】优化算法

1 有监督学习的损失函数

1.1 分类问题

对二分类问题, Y={1,−1}, 我们希望sign f(xi,θ)=yi, 最自然的损失函数是0-1损失,

函数定义 特点
0-1损失函数 非凸、非光滑,很难直接对该函数进行优化
Hinge损失函数 当fy≥1时, 该函数不对其做任何惩罚。 Hinge损失在fy=1处不可导, 因此不能用梯度下降法进行优化, 而是用次梯度下降法
Logistic损失函数 该损失函数对所有的样本点都有所惩罚, 因此对异常值相对更敏感一些
交叉熵损失函数

1.2回归问题

希望 , 最常用的损失函数是平方损失函数

函数定义 特点
平方损失函数 对异常点比较敏感
绝对损失函数 在f=y处无法求导数
Huber损失函数

2 梯度下降法

梯度下降算法发展过程

3 L1正则化与稀疏性

稀疏性,就是模型中的很多参数为0,相当于对模型进行了特征选择,只留下了重要的特征。提高了模型的泛化能力,降低了过拟合的可能。

为什么L1正则化能让模型具有稀疏性?

3.1 从解空间形状来看

黄色的部分是L2和L1正则项约束后的解空间, 绿色的等高线是凸优化问题中目标函数的等高线,L2正则项约束后的解空间是圆形, 而L1正则项约束的解空间是多边形。显然, 多边形的解空间更容易在尖角处与等高线碰撞出稀疏解。

3.2 从函数叠加来看

首先, 考虑加上L2正则化项, 目标函数变成L(w)+Cw2, 其函数曲线为黄色。此时, 最小值点在黄点处, 对应的w*的绝对值减小了, 但仍然非0。

然后, 考虑加上L1正则化项, 目标函数变成L(w)+C|w|, 其函数曲线为绿色。此时, 最小值点在红点处, 对应的w是0, 产生了稀疏性。

在一些在线梯度下降算法中, 往往会采用截断梯度法来产生稀疏性, 这同L1正则项产生稀疏性的原理是类似的。

3.3从贝叶斯实验来看

从贝叶斯的角度来理解L1正则化和L2正则化, 简单的解释是, L1正则化相当于对模型参数w引入了拉普拉斯先验, L2正则化相当于引入了高斯先验, 而拉普拉斯先验使参数为0的可能性更大。

相关推荐
2303_Alpha19 分钟前
深度学习入门:深度学习(完结)
人工智能·笔记·python·深度学习·神经网络·机器学习
冲帕Chompa20 分钟前
图论part10 bellman_ford算法
数据结构·算法·图论
緈福的街口23 分钟前
【leetcode】144. 二叉树的前序遍历
算法·leetcode
GG不是gg28 分钟前
排序算法之基础排序:冒泡,选择,插入排序详解
数据结构·算法·青少年编程·排序算法
白白白飘1 小时前
pytorch 15.1 学习率调度基本概念与手动实现方法
人工智能·pytorch·学习
随意起个昵称1 小时前
【双指针】供暖器
算法
深度学习入门1 小时前
机器学习,深度学习,神经网络,深度神经网络之间有何区别?
人工智能·python·深度学习·神经网络·机器学习·机器学习入门·深度学习算法
倒霉蛋小马1 小时前
最小二乘法拟合直线,用线性回归法、梯度下降法实现
算法·最小二乘法·直线
codists1 小时前
《算法导论(第4版)》阅读笔记:p82-p82
算法
埃菲尔铁塔_CV算法1 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新
深度学习·算法·目标检测