【机器学习7】优化算法

1 有监督学习的损失函数

1.1 分类问题

对二分类问题, Y={1,−1}, 我们希望sign f(xi,θ)=yi, 最自然的损失函数是0-1损失,

函数定义 特点
0-1损失函数 非凸、非光滑,很难直接对该函数进行优化
Hinge损失函数 当fy≥1时, 该函数不对其做任何惩罚。 Hinge损失在fy=1处不可导, 因此不能用梯度下降法进行优化, 而是用次梯度下降法
Logistic损失函数 该损失函数对所有的样本点都有所惩罚, 因此对异常值相对更敏感一些
交叉熵损失函数

1.2回归问题

希望 , 最常用的损失函数是平方损失函数

函数定义 特点
平方损失函数 对异常点比较敏感
绝对损失函数 在f=y处无法求导数
Huber损失函数

2 梯度下降法

梯度下降算法发展过程

3 L1正则化与稀疏性

稀疏性,就是模型中的很多参数为0,相当于对模型进行了特征选择,只留下了重要的特征。提高了模型的泛化能力,降低了过拟合的可能。

为什么L1正则化能让模型具有稀疏性?

3.1 从解空间形状来看

黄色的部分是L2和L1正则项约束后的解空间, 绿色的等高线是凸优化问题中目标函数的等高线,L2正则项约束后的解空间是圆形, 而L1正则项约束的解空间是多边形。显然, 多边形的解空间更容易在尖角处与等高线碰撞出稀疏解。

3.2 从函数叠加来看

首先, 考虑加上L2正则化项, 目标函数变成L(w)+Cw2, 其函数曲线为黄色。此时, 最小值点在黄点处, 对应的w*的绝对值减小了, 但仍然非0。

然后, 考虑加上L1正则化项, 目标函数变成L(w)+C|w|, 其函数曲线为绿色。此时, 最小值点在红点处, 对应的w是0, 产生了稀疏性。

在一些在线梯度下降算法中, 往往会采用截断梯度法来产生稀疏性, 这同L1正则项产生稀疏性的原理是类似的。

3.3从贝叶斯实验来看

从贝叶斯的角度来理解L1正则化和L2正则化, 简单的解释是, L1正则化相当于对模型参数w引入了拉普拉斯先验, L2正则化相当于引入了高斯先验, 而拉普拉斯先验使参数为0的可能性更大。

相关推荐
cpp_250114 小时前
B3927 [GESP202312 四级] 小杨的字典
数据结构·c++·算法·题解·洛谷
努力犯错14 小时前
如何在ComfyUI中配置LTX-2:2026年AI视频生成完整指南
大数据·人工智能·计算机视觉·语言模型·开源·音视频
予枫的编程笔记14 小时前
Elasticsearch聚合分析与大规模数据处理:解锁超越搜索的进阶能力
java·大数据·人工智能·分布式·后端·elasticsearch·全文检索
raoxiaoya14 小时前
cloudwego - eino 使用教程
人工智能·golang
Cx330❀14 小时前
《C++ 递归、搜索与回溯》第2-3题:合并两个有序链表,反转链表
开发语言·数据结构·c++·算法·链表·面试
golang学习记14 小时前
JetBrains 推出革命性产品:AI IDE (AIR) —— AI编程全新范式!
ide·人工智能
数据猿14 小时前
产业共振:数据猿与永洪科技共塑数智未来
人工智能·科技·chatgpt
AI科技星14 小时前
电磁耦合常数Z‘的第一性原理推导与严格验证:张祥前统一场论的几何基石
服务器·人工智能·线性代数·算法·矩阵
540_54014 小时前
ADVANCE Day44
人工智能·python·深度学习
AI科技星14 小时前
电场起源的几何革命:变化的引力场产生电场方程的第一性原理推导、验证与统一性意义
开发语言·人工智能·线性代数·算法·机器学习·数学建模