【机器学习7】优化算法

1 有监督学习的损失函数

1.1 分类问题

对二分类问题, Y={1,−1}, 我们希望sign f(xi,θ)=yi, 最自然的损失函数是0-1损失,

函数定义 特点
0-1损失函数 非凸、非光滑,很难直接对该函数进行优化
Hinge损失函数 当fy≥1时, 该函数不对其做任何惩罚。 Hinge损失在fy=1处不可导, 因此不能用梯度下降法进行优化, 而是用次梯度下降法
Logistic损失函数 该损失函数对所有的样本点都有所惩罚, 因此对异常值相对更敏感一些
交叉熵损失函数

1.2回归问题

希望 , 最常用的损失函数是平方损失函数

函数定义 特点
平方损失函数 对异常点比较敏感
绝对损失函数 在f=y处无法求导数
Huber损失函数

2 梯度下降法

梯度下降算法发展过程

3 L1正则化与稀疏性

稀疏性,就是模型中的很多参数为0,相当于对模型进行了特征选择,只留下了重要的特征。提高了模型的泛化能力,降低了过拟合的可能。

为什么L1正则化能让模型具有稀疏性?

3.1 从解空间形状来看

黄色的部分是L2和L1正则项约束后的解空间, 绿色的等高线是凸优化问题中目标函数的等高线,L2正则项约束后的解空间是圆形, 而L1正则项约束的解空间是多边形。显然, 多边形的解空间更容易在尖角处与等高线碰撞出稀疏解。

3.2 从函数叠加来看

首先, 考虑加上L2正则化项, 目标函数变成L(w)+Cw2, 其函数曲线为黄色。此时, 最小值点在黄点处, 对应的w*的绝对值减小了, 但仍然非0。

然后, 考虑加上L1正则化项, 目标函数变成L(w)+C|w|, 其函数曲线为绿色。此时, 最小值点在红点处, 对应的w是0, 产生了稀疏性。

在一些在线梯度下降算法中, 往往会采用截断梯度法来产生稀疏性, 这同L1正则项产生稀疏性的原理是类似的。

3.3从贝叶斯实验来看

从贝叶斯的角度来理解L1正则化和L2正则化, 简单的解释是, L1正则化相当于对模型参数w引入了拉普拉斯先验, L2正则化相当于引入了高斯先验, 而拉普拉斯先验使参数为0的可能性更大。

相关推荐
阿里云云原生38 分钟前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官
diemeng11192 小时前
AI前端开发技能变革时代:效率与创新的新范式
前端·人工智能
有Li2 小时前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
计算机小白一个5 小时前
蓝桥杯 Java B 组之设计 LRU 缓存
java·算法·蓝桥杯
万事可爱^5 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
牧歌悠悠6 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬7 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬7 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian7 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT7 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理