STM32 LL库 TIM3定时器多通道捕获输入采集

为什么不用HAL库,使用HAL库捕获输入一个通道还尚可,多通道捕获由于HAL的回调函数不符合我的要求,干脆直接切换到LL库。网上找了许多,代码处理写的不符合我的要求,这里记录一下我的调试过程。

TIM2输出1路PWM信号,使用1分3杜邦线接到TIM3的CH2-CH3-CH4通道进行捕获输入。

c 复制代码
#include "tim.h"

/* TIM2 init function */
void MX_TIM2_Init(void)
{

  LL_TIM_InitTypeDef TIM_InitStruct = {0};
  LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  /* Peripheral clock enable */
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);


  TIM_InitStruct.Prescaler = 63;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 9999;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  LL_TIM_Init(TIM2, &TIM_InitStruct);
  LL_TIM_DisableARRPreload(TIM2);
  LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
  LL_TIM_OC_EnablePreload(TIM2, LL_TIM_CHANNEL_CH2);
  TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_PWM1;
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.CompareValue = 5000;
  TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
  LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2);
  LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
  LL_TIM_DisableMasterSlaveMode(TIM2);
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
    /**TIM2 GPIO Configuration
    PB3     ------> TIM2_CH2
    */
  GPIO_InitStruct.Pin = LL_GPIO_PIN_3;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_2;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
	
	//-------------------------------------------
	LL_TIM_OC_SetCompareCH2(TIM2,2000);
	LL_TIM_CC_EnableChannel(TIM2,LL_TIM_CHANNEL_CH2);
	LL_TIM_EnableCounter(TIM2);

}
/* TIM3 init function */
void MX_TIM3_Init(void)
{
  LL_TIM_InitTypeDef TIM_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* Peripheral clock enable */
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3);

  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA);
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  /**TIM3 GPIO Configuration
  PA7   ------> TIM3_CH2
  PB0   ------> TIM3_CH3
  PB1   ------> TIM3_CH4
  */
  GPIO_InitStruct.Pin = LL_GPIO_PIN_7;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = LL_GPIO_PIN_0;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* TIM3 interrupt Init */
  NVIC_SetPriority(TIM3_IRQn, 0);
  NVIC_EnableIRQ(TIM3_IRQn);

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  TIM_InitStruct.Prescaler = 63;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 65535;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  LL_TIM_Init(TIM3, &TIM_InitStruct);
  LL_TIM_DisableARRPreload(TIM3);
  LL_TIM_SetClockSource(TIM3, LL_TIM_CLOCKSOURCE_INTERNAL);
  LL_TIM_SetTriggerOutput(TIM3, LL_TIM_TRGO_RESET);
  LL_TIM_DisableMasterSlaveMode(TIM3);
	
  LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
  LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
  LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
  LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
	
  LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_ACTIVEINPUT_DIRECTTI);
  LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_ICPSC_DIV1);
  LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_IC_FILTER_FDIV1);
  LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_IC_POLARITY_RISING);
	
  LL_TIM_IC_SetActiveInput(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_ACTIVEINPUT_DIRECTTI);
  LL_TIM_IC_SetPrescaler(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_ICPSC_DIV1);
  LL_TIM_IC_SetFilter(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_IC_FILTER_FDIV1);
  LL_TIM_IC_SetPolarity(TIM3, LL_TIM_CHANNEL_CH4, LL_TIM_IC_POLARITY_RISING);
	
  /* USER CODE BEGIN TIM3_Init 2 */
   LL_TIM_EnableIT_UPDATE(TIM3);//更新中断使能
   LL_TIM_EnableIT_CC2(TIM3);//捕获通道2使能
	 LL_TIM_EnableIT_CC3(TIM3);//捕获通道3使能
	 LL_TIM_EnableIT_CC4(TIM3);//捕获通道4使能
   LL_TIM_CC_EnableChannel(TIM3,LL_TIM_CHANNEL_CH2);//通道2使能
	 LL_TIM_CC_EnableChannel(TIM3,LL_TIM_CHANNEL_CH3);//通道3使能
	 LL_TIM_CC_EnableChannel(TIM3,LL_TIM_CHANNEL_CH4);//通道4使能
   LL_TIM_EnableCounter(TIM3);
 
  /* USER CODE END TIM3_Init 2 */

}



uint32_t  TIM3_OverCnt = 0;
int32_t  Value_Temp2 = 0;
int32_t  Value_Temp3 = 0;
int32_t  Value_Temp4 = 0;

uint32_t  TIM3_CH2_Capture_FristValue_1; 
uint32_t  TIM3_CH2_Capture_FristValue_2; 
uint32_t  TIM3_CH2_Capture_FristValue_3; 
uint32_t  TIM3_CH2_Capture_HighLevel; 
uint32_t  TIM3_CH2_Capture_LowLevel; 
uint8_t   TIM3_CH2_CaptureNumber;
//uint32_t  TIM3_CH2_Freq = 0;
//float 	  TIM3_CH2_Duty = 0;

uint32_t  TIM3_CH3_Capture_FristValue_1; 
uint32_t  TIM3_CH3_Capture_FristValue_2; 
uint32_t  TIM3_CH3_Capture_FristValue_3; 
uint32_t  TIM3_CH3_Capture_HighLevel; 
uint32_t  TIM3_CH3_Capture_LowLevel; 
uint8_t   TIM3_CH3_CaptureNumber;
//uint32_t  TIM3_CH3_Freq = 0;
//float 	  TIM3_CH3_Duty = 0;


uint32_t  TIM3_CH4_Capture_FristValue_1; 
uint32_t  TIM3_CH4_Capture_FristValue_2; 
uint32_t  TIM3_CH4_Capture_FristValue_3; 
uint32_t  TIM3_CH4_Capture_HighLevel; 
uint32_t  TIM3_CH4_Capture_LowLevel; 
uint8_t   TIM3_CH4_CaptureNumber;


void TIM3_CallBack(void)
{	
	//------------------------------------------CC2
		if(LL_TIM_IsActiveFlag_CC2(TIM3))
		{		
			 LL_TIM_ClearFlag_CC2(TIM3);
			
				if(TIM3_CH2_CaptureNumber == 0)
				{
						TIM3_OverCnt = 0;
						TIM3_CH2_CaptureNumber = 1;	
//					  LL_TIM_SetCounter(TIM3,0);	
				}
				else
					if(TIM3_CH2_CaptureNumber == 1)
					{	
						TIM3_CH2_Capture_FristValue_1 = LL_TIM_IC_GetCaptureCH2(TIM3);	// 获取当前的捕获值. 即CCRx2  
						//设置下降沿触发
						LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_FALLING);						
						TIM3_CH2_CaptureNumber = 2;
						TIM3_OverCnt = 0;						
						
					}
					else
						if(TIM3_CH2_CaptureNumber == 2)
						{
							TIM3_CH2_Capture_FristValue_2 = LL_TIM_IC_GetCaptureCH2(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{								 						
								TIM3_CH2_Capture_HighLevel = TIM3_OverCnt * 65535 + TIM3_CH2_Capture_FristValue_2 - TIM3_CH2_Capture_FristValue_1;			
							}
							else
							{
								Value_Temp2 = TIM3_CH2_Capture_FristValue_2 - TIM3_CH2_Capture_FristValue_1;
								Value_Temp2 = Value_Temp2>0?Value_Temp2:0;							
								TIM3_CH2_Capture_HighLevel = TIM3_OverCnt * 65535 + Value_Temp2;
							}											
							//设置上升沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_RISING);		
							TIM3_CH2_CaptureNumber = 3;
							TIM3_OverCnt = 0;
						}
					else
						if(TIM3_CH2_CaptureNumber == 3)
						{
							TIM3_CH2_Capture_FristValue_3 = LL_TIM_IC_GetCaptureCH2(TIM3);	// 获取当前的捕获值. 即CCRx2  
							
							if(TIM3_OverCnt >= 1)
							{
								TIM3_CH2_Capture_LowLevel = TIM3_OverCnt * 65535 + TIM3_CH2_Capture_FristValue_3 - TIM3_CH2_Capture_FristValue_2;							
							}
							else
							{
								Value_Temp2 = TIM3_CH2_Capture_FristValue_3 - TIM3_CH2_Capture_FristValue_2;
								Value_Temp2 = Value_Temp2>0?Value_Temp2:0;
								TIM3_CH2_Capture_LowLevel = TIM3_OverCnt * 65535 + Value_Temp2;							
							}
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_FALLING);				
							TIM3_CH2_CaptureNumber = 4;
							TIM3_OverCnt = 0;
						}		
					else
						if(TIM3_CH2_CaptureNumber == 4)
						{
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH2,LL_TIM_IC_POLARITY_RISING);				
							TIM3_CH2_CaptureNumber = 1;
							TIM3_OverCnt = 0;
						}					
		}		
	//------------------------------------------CC3
		if(LL_TIM_IsActiveFlag_CC3(TIM3))
		{	
			 LL_TIM_ClearFlag_CC3(TIM3);

				if(TIM3_CH3_CaptureNumber == 0)
				{
						TIM3_OverCnt = 0;
						TIM3_CH3_CaptureNumber = 1;	
//					  LL_TIM_SetCounter(TIM3,0);	
				}
				else
					if(TIM3_CH3_CaptureNumber == 1)
					{
						TIM3_OverCnt = 0;
					
						TIM3_CH3_Capture_FristValue_1 = LL_TIM_IC_GetCaptureCH3(TIM3);	// 获取当前的捕获值. 即CCRx2  
						//设置下降沿触发
						LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_FALLING);						
						TIM3_CH3_CaptureNumber = 2;					
					}
					else
						if(TIM3_CH3_CaptureNumber == 2)
						{
							TIM3_CH3_Capture_FristValue_2 = LL_TIM_IC_GetCaptureCH3(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{			
								TIM3_CH3_Capture_HighLevel = TIM3_OverCnt * 65535 + TIM3_CH3_Capture_FristValue_2 - TIM3_CH3_Capture_FristValue_1;							
							}	
							else
							{
								Value_Temp3 = TIM3_CH3_Capture_FristValue_2 - TIM3_CH3_Capture_FristValue_1;
								Value_Temp3 = Value_Temp3>0?Value_Temp3:0;						
								TIM3_CH3_Capture_HighLevel = TIM3_OverCnt * 65535 + Value_Temp3;
							}	

							//设置上升沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_RISING);			
							TIM3_CH3_CaptureNumber = 3;
							TIM3_OverCnt = 0;
						}
					else
						if(TIM3_CH3_CaptureNumber == 3)
						{
							TIM3_CH3_Capture_FristValue_3 = LL_TIM_IC_GetCaptureCH3(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{					
								TIM3_CH3_Capture_LowLevel = TIM3_OverCnt * 65535 + TIM3_CH3_Capture_FristValue_3 - TIM3_CH3_Capture_FristValue_2;								
							}	
							else
							{
								Value_Temp3 = TIM3_CH3_Capture_FristValue_3 - TIM3_CH3_Capture_FristValue_2;
								Value_Temp3 = Value_Temp3>0?Value_Temp3:0;							
								TIM3_CH3_Capture_LowLevel = TIM3_OverCnt * 65535 + Value_Temp3;
							}	

		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_FALLING);	
							TIM3_CH3_CaptureNumber = 4;
							TIM3_OverCnt = 0;
						}		
					else
						if(TIM3_CH3_CaptureNumber == 4)
						{
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH3,LL_TIM_IC_POLARITY_RISING);		
							TIM3_CH3_CaptureNumber = 1;
							TIM3_OverCnt = 0;
						}				
		}
	//------------------------------------------CC4
		if(LL_TIM_IsActiveFlag_CC4(TIM3))
		{	
			 LL_TIM_ClearFlag_CC4(TIM3);

				if(TIM3_CH4_CaptureNumber == 0)
				{
						TIM3_OverCnt = 0;
						TIM3_CH4_CaptureNumber = 1;	
//					   LL_TIM_SetCounter(TIM3,0);	
				}
				else
					if(TIM3_CH4_CaptureNumber == 1)
					{
						TIM3_OverCnt = 0;
					
						TIM3_CH4_Capture_FristValue_1 = LL_TIM_IC_GetCaptureCH4(TIM3);	// 获取当前的捕获值. 即CCRx2  
						//设置下降沿触发
						LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_FALLING);			
						TIM3_CH4_CaptureNumber = 2;
						
					}
					else
						if(TIM3_CH4_CaptureNumber == 2)
						{
							TIM3_CH4_Capture_FristValue_2 = LL_TIM_IC_GetCaptureCH4(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{					
								TIM3_CH4_Capture_HighLevel = TIM3_OverCnt * 65535 + TIM3_CH4_Capture_FristValue_2 - TIM3_CH4_Capture_FristValue_1;								
							}	
							else
							{
								Value_Temp4 = TIM3_CH4_Capture_FristValue_2 - TIM3_CH4_Capture_FristValue_1;
								Value_Temp4 = Value_Temp4>0?Value_Temp4:0;							
								TIM3_CH4_Capture_HighLevel = TIM3_OverCnt * 65535 + Value_Temp4;
							}	

							//设置上升沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_RISING);			
							TIM3_CH4_CaptureNumber = 3;
							TIM3_OverCnt = 0;
						}
					else
						if(TIM3_CH4_CaptureNumber == 3)
						{
							TIM3_CH4_Capture_FristValue_3 = LL_TIM_IC_GetCaptureCH4(TIM3);	// 获取当前的捕获值. 即CCRx2  
							if(TIM3_OverCnt >= 1)
							{									
								TIM3_CH4_Capture_LowLevel = TIM3_OverCnt * 65535 + TIM3_CH4_Capture_FristValue_3 - TIM3_CH4_Capture_FristValue_2; 								
							}	
							else
							{
								Value_Temp4 = TIM3_CH4_Capture_FristValue_3 - TIM3_CH4_Capture_FristValue_2;
								Value_Temp4 = Value_Temp4>0?Value_Temp4:0;							
								TIM3_CH4_Capture_LowLevel = TIM3_OverCnt * 65535 + Value_Temp4; 
							}	

		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_FALLING);	
							TIM3_CH4_CaptureNumber = 4;
							TIM3_OverCnt = 0;
						}		
					else
						if(TIM3_CH4_CaptureNumber == 4)
						{
		//					//设置    沿触发
							LL_TIM_IC_SetPolarity(TIM3,LL_TIM_CHANNEL_CH4,LL_TIM_IC_POLARITY_RISING);		
							TIM3_CH4_CaptureNumber = 1;
							TIM3_OverCnt = 0;
							
						}				
		} 
 	
		
		
 	//------------------------------------------Update
		if(LL_TIM_IsActiveFlag_UPDATE(TIM3))
		{	
			LL_TIM_ClearFlag_UPDATE(TIM3); //每次溢出时间为65536us
			TIM3_OverCnt++;
		}
				

		 
}
c 复制代码
#ifndef __TIM_H__
#define __TIM_H__

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "main.h"


void MX_TIM2_Init(void);
void MX_TIM3_Init(void);
void TIM3_CallBack(void);


#ifdef __cplusplus
}
#endif

#endif /* __TIM_H__ */
c 复制代码
#include "main.h"
#include "tim.h"
#include "gpio.h"

 
void SystemClock_Config(void);
 
int main(void)
{
 
  HAL_Init();

 
  SystemClock_Config();

 
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
 
  while (1)
  {
 
  }
 
}
c 复制代码
/**
  * @brief This function handles TIM3 global interrupt.
  */
void TIM3_IRQHandler(void)
{
 
	TIM3_CallBack();
 
}
相关推荐
Mr.谢尔比11 分钟前
电赛入门之软件stm32keil+cubemx
stm32·单片机·嵌入式硬件·mcu·信息与通信·信号处理
LightningJie14 分钟前
STM32中ARR(自动重装寄存器)为什么要减1
stm32·单片机·嵌入式硬件
鹿屿二向箔20 分钟前
STM32外设之SPI的介绍
stm32
西瓜籽@1 小时前
STM32——毕设基于单片机的多功能节能窗控制系统
stm32·单片机·课程设计
远翔调光芯片^138287988723 小时前
远翔升压恒流芯片FP7209X与FP7209M什么区别?做以下应用市场摄影补光灯、便携灯、智能家居(调光)市场、太阳能、车灯、洗墙灯、舞台灯必看!
科技·单片机·智能家居·能源
极客小张4 小时前
基于STM32的智能充电桩:集成RTOS、MQTT与SQLite的先进管理系统设计思路
stm32·单片机·嵌入式硬件·mqtt·sqlite·毕业设计·智能充电桩
m0_739312877 小时前
【STM32】项目实战——OV7725/OV2604摄像头颜色识别检测(开源)
stm32·单片机·嵌入式硬件
嵌入式小章7 小时前
基于STM32的实时时钟(RTC)教学
stm32·嵌入式硬件·实时音视频
TeYiToKu7 小时前
笔记整理—linux驱动开发部分(9)framebuffer驱动框架
linux·c语言·arm开发·驱动开发·笔记·嵌入式硬件·arm
基极向上的三极管8 小时前
【AD】3-4 在原理图中放置元件
嵌入式硬件