傅里叶分析(1)

​本文介绍了傅里叶分析及其在CFD的应用。由于篇幅原因,将其拆分为系列化文章:

  1. 连续信号的傅里叶分析
  2. 离散信号的傅里叶分析
  3. 傅里叶分析在CFD的一些应用
  4. 在Fluent进行傅里叶分析的操作

1 概述

傅里叶分析是信号分析中常用方法之一。傅里叶分析可将信号在时域和频域之间进行转换,从而分析信号在频域上的相关问题,如光的颜色、结构共振点、乐器声品质等。

傅里叶分析(Fourier analysis)根据信号的时域数据特征,分为 4 个类别:

  • 傅里叶级数(Fourier series,FS):周期连续信号
  • 傅里叶变换(Fourier transform,FT):非周期连续信号
  • 离散傅里叶变换(discrete Fourier transform,DFT):周期离散信号
  • 离散时间傅里叶变换(discrete-time Fourier transform,DTFT):非周期离散信号

2 傅里叶级数

傅里叶级数描述了将周期函数(其周期为 T)转换为若干个三角函数之和的方法。被转换的周期函数在单个周期内允许存在有限个间断点(如方波函数)。

傅里叶级数的最基本表示方法为若干正弦、余弦函数的和,即正弦-余弦形式:

其中,各项系数的取值为:

通过三角函数变换,傅里叶级数也可表示为幅值-相位形式:

幅值-相位形式和正弦-余弦形式的系数关系为:

将周期函数转换为傅里叶级数的方法也称为谐波分析(harmonic analysis),每个级数项根据 n 取值称为 n 次谐波(harmonics)。理论上,周期函数包含无穷多谐波,实际应用中通常只取前若干次谐波截断近似。截断的谐波次数越高,则越接近原始函数。

如图为方波的谐波叠加结果对比,很显然,使用的谐波数量越多则越接近方波真实形状。

周期函数的频谱特征为:

  • 一次谐波频率(基频)为 1/T
  • n 次谐波频率为 n/T,为基频的整数倍
  • 可能存在 0 幅值的谐波
  • 幅值非 0 的谐波,次数越高,幅值越小

如方波频谱特征为:

  • 偶数次谐波(二次谐波、四次谐波等)幅值为 0
  • 奇数次谐波(一次谐波、三次谐波等)幅值为基频幅值的 1/n

方波频谱如下图所示:

正弦-余弦形式的傅里叶级数可根据欧拉公式改写成指数形式。

欧拉公式

傅里叶级数(指数形式)

指数形式系数取值为:

指数形式和正弦-余弦形式的系数关系为:

3 傅里叶变换

傅里叶变换为傅里叶级数针对非周期函数的扩展。

非周期函数为周期趋近于无穷大的极限状态,此时基频 1/T 趋近于 0,频谱从离散点 n/T 变成连续函数。在数学处理中,傅里叶级数的求和操作变成傅里叶变换的求积分操作。

傅里叶变换为时域到频域的变换,其变换结果为频域函数。傅里叶变换类似于傅里叶级数中,求级数的各项系数。

傅里叶变换计算公式为:

傅里叶逆变换为频域到时域的变换,其变换结果为时域函数。傅里叶逆变换类似于傅里叶级数中,根据级数各项表达式求原函数。傅里叶逆变换计算公式为:

比较指数形式傅里叶级数和傅里叶变换公式,在 T 趋向于无穷大时:

  • 频谱的频率取值从离散点 n/T 变成连续变量 ξ
  • 傅里叶级数的系数从离散数值 Cn 变成连续函数 F(ξ)

sgn(x)的傅里叶变换

4 重要问题

4.1 复信号的频谱

物理意义的频率定义为单位时间内的重复次数,其取值必然为正数,不存在负频率的情况。

对于多个互相关联的信号,可将其进行组合以方便分析和处理,典型应用场景如波干涉分析等需要考虑信号相位影响的问题。一种常用方法为将信号表示为 z=f(t)+i*g(t) 的复函数形式。

复信号有实部和虚部两个自变量,为三维空间的函数。在三维空间中,定义旋转方向需要满足右手螺旋法则,负的角速度旋转方向与右手螺旋法则相反。根据角速度与频率之间的数量关系,可得到负频率。物理意义上的频率定义,其实际为负频率的绝对值。

频率符号对复信号的影响(图源:dsp.stackexchange.com

频域函数 F(ξ) 为复函数,即存在复频率。复频率表示了频率的相位。

复频率及其相位图示(图源:eetimes.com

若 f(t) 是纯实数的函数,其傅里叶变换后的频域函数 F(ξ) 为偶函数,其幅值和相位特点为:

  • 幅值为频率的偶函数
  • 相位为频率的奇函数

4.2 信号强度比较

信号在不同频率的强度差异可能跨数个数量级,难以直接比较或分析差异。工程应用中,也需要考虑信号之间的强度比例问题(如传感器信噪比),而不仅是信号强度本身。

为此,引入单位贝尔(B)来表征信号强度之间数量级关系。实际工程中通常采用分贝(dB),其换算为 1 dB = 0.1 B。

若比较标准为功率或与之成相关的物理量(如光强度、声强度等),dB 的数值计算公式为:

若比较标准为与功率的平方根成比例的物理量(如速度、电流、电压等),dB 的数值计算公式为:

上述算式中,p1 和 f1 为实际信号的物理量,p0 和 f0 为参考基准值。由于 dB 定义基于对数比例,因而不满足线性叠加关系。

各 dB 数值对应的比例值(图源:维基百科)

相关推荐
Ricciflows21 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
cxylay1 个月前
Excel自带傅里叶分析数据处理——归一化处理
excel·傅立叶分析·归一化处理
翎野君2 个月前
傅里叶分析之掐死教程(完整版)更新于2014.06.06
傅立叶分析
dataloading2 个月前
【Ansys Fluent】计算数据导入tecplot傅里叶分析
傅立叶分析
垚武田3 个月前
【OpenCV】离散傅里叶变换
opencv·ocr·傅立叶分析
仿真APP3 个月前
基于伏图的汽车发动机曲轴模态仿真APP应用介绍
云计算·汽车·仿真·发动机·cfd·cae·simdroid
仿真APP3 个月前
基于伏图的数字心脏模拟仿真APP应用介绍
云计算·cfd·流体仿真·simdroid·心脏动脉血管·流体动力学·云图
垚武田3 个月前
【傅里叶分析】复数基础知识
傅立叶分析
贾贾20237 个月前
MATLAB初学者入门(29)—— 傅里叶分析
开发语言·人工智能·学习·算法·matlab·aigc·傅立叶分析
好啊啊啊啊8 个月前
论文阅读,Accelerating the Lattice Boltzmann Method(五)
论文阅读·cfd·lbm·accelerator