(Matalb时序预测)WOA-BP鲸鱼算法优化BP神经网络的多维时序回归预测

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、部分代码:

四、完整代码+数据+说明手册:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matalb平台编译,将WOA(鲸鱼算法)与BP神经网络结合,进行数据回归预测

  • 输入训练的数据包含8个特征,1个响应值,即通过8个输入值预测1个输出值(多变量时序预测)

  • 归一WOA算法优化BP神经网络的初始权重、初始偏差等参数,记录下最优的网络参数

  • 训练BP网络进行时序回归预测,将优化前后的网络预测效果进行对比,突出优化的重要性

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、部分代码:

复制代码
clc;
clear;
warning off;
%% 导入数据
Data = table2array(readtable("数据集.xlsx"));
% 本例数据集中包含:
% 1. 总共472个样本(每一行表示一个样本)
% 2. 每个样本8个特征值(即前8列每一列表示样本的一个特征,即输入的变量)
% 3. 每个样本1个响应值(第9列为表示样本的响应值,即被预测的变量)
​
%% 划分训练集和测试集
InPut_num = 1:1:8; % 输入特征个数,数据表格中前8列为输入值,因此设置为1:1:8,若前5个为输入则设置为1:1:5
OutPut_num = 9; % 输出响应个数,本例仅一个响应值,为数据表格中第9个,若多个响应值参照上行数据格式设置为x:1:y
​
% 选取前376个样本作为训练集,后96个样本作为测试集,即(1:376),和(377:end)
Train_InPut = Data(1:376,InPut_num); % 训练输入
Train_OutPut = Data(1:376,OutPut_num); % 训练输出
Test_InPut = Data(377:end,InPut_num); % 测试输入
Test_OutPut = Data(377:end,OutPut_num); % 测试输出
​
%% 数据归一化
% 将数据归一化到0-1之间
Temp = [Train_OutPut;Test_OutPut];
[~, Ps] = mapminmax(Temp',0,1); 
% 归一化训练输入值
Sc = size(Train_InPut);
Temp = reshape(Train_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Train_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化测试输入值
Sc = size(Test_InPut);
Temp = reshape(Test_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Test_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化训练输出值
Train_OutPut = mapminmax('apply',Train_OutPut',Ps);
% 归一化测试输出值
Test_OutPut = mapminmax('apply',Test_OutPut',Ps);

四、完整代码+数据+说明手册:

相关推荐
mit6.82412 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
AI波克布林17 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
Re_draw_debubu1 天前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆
重启的码农1 天前
ggml 介绍(5) GGUF 上下文 (gguf_context)
c++·人工智能·神经网络
楚韵天工2 天前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘
老艾的AI世界2 天前
AI去、穿、换装软件下载,无内容限制,偷偷收藏
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·换装·虚拟试衣·ai换装·一键换装
khystal3 天前
ISTA为什么要加上软阈值激活函数?r若没有L1 正则化也要加其他激活函数吗?
神经网络·信号处理
重启的码农3 天前
ggml介绍 (2) 量化 (Quantization)
人工智能·神经网络
重启的码农3 天前
ggml介绍 (1) 张量 (ggml_tensor)
神经网络
失散133 天前
深度学习——03 神经网络(4)-正则化方法&价格分类案例
深度学习·神经网络·正则化