4. 【自动驾驶与机器人中的SLAM技术】点云中的拟合问题和K近邻

目录

  • [1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。](#1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。)
  • [2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。](#2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。)
  • [3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。](#3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。)
  • [4. 也欢迎大家来公众号--"过千帆"读书。](#4. 也欢迎大家来公众号--“过千帆”读书。)

1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。

在NearbyType中定义NEARBY14方法,并定义好nearby_grids_即可。

2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。


3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。

熟悉了nanoflann库中exemples中的例子,了解了构建kdtree以及K近邻搜索的方法。
nanoflann库构建kdtree需要的点云类型使用的是exemples中头文件utils.h中的定义,使用的K近邻搜索方法为knnSearch()函数。




评估结果:

由上图所示:
①三种方法实现的KNN算法的准确率和召回率均为1,未出现漏检与误检的情况;
②在build tree的耗时方面,自定义的kdtree构建耗时较大(7.9毫秒),而pcl库和nanoflann库在build tree方面耗时水平相当(分别为3.2毫秒和3.3毫秒);
③在KNN检索调用耗时方面,nanoflann的4.27毫秒要优于自定义实现的7.9毫秒,并且远远优于pcl版本的35.3毫秒.

4. 也欢迎大家来公众号--"过千帆"读书。

相关推荐
前端双越老师4 分钟前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子21 分钟前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger38 分钟前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼41 分钟前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339862 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室3 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI3 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20063 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3934 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水8 小时前
Unreal Engine 5中的AI知识
人工智能