4. 【自动驾驶与机器人中的SLAM技术】点云中的拟合问题和K近邻

目录

  • [1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。](#1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。)
  • [2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。](#2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。)
  • [3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。](#3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。)
  • [4. 也欢迎大家来公众号--"过千帆"读书。](#4. 也欢迎大家来公众号--“过千帆”读书。)

1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。

在NearbyType中定义NEARBY14方法,并定义好nearby_grids_即可。

2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。


3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。

熟悉了nanoflann库中exemples中的例子,了解了构建kdtree以及K近邻搜索的方法。
nanoflann库构建kdtree需要的点云类型使用的是exemples中头文件utils.h中的定义,使用的K近邻搜索方法为knnSearch()函数。




评估结果:

由上图所示:
①三种方法实现的KNN算法的准确率和召回率均为1,未出现漏检与误检的情况;
②在build tree的耗时方面,自定义的kdtree构建耗时较大(7.9毫秒),而pcl库和nanoflann库在build tree方面耗时水平相当(分别为3.2毫秒和3.3毫秒);
③在KNN检索调用耗时方面,nanoflann的4.27毫秒要优于自定义实现的7.9毫秒,并且远远优于pcl版本的35.3毫秒.

4. 也欢迎大家来公众号--"过千帆"读书。

相关推荐
牧歌悠悠2 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬2 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬2 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian3 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
楼台的春风3 小时前
【MCU驱动开发概述】
c语言·驱动开发·单片机·嵌入式硬件·mcu·自动驾驶·嵌入式
Archie_IT3 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿3 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
灵感素材坊4 小时前
解锁音乐创作新技能:AI音乐网站的正确使用方式
人工智能·经验分享·音视频
LS_learner4 小时前
小智机器人CMakeLists编译文件解析
嵌入式硬件·机器人
国货崛起4 小时前
波兰发布世界首个双足肌肉骨骼机器人,细节高度模拟人类生物特征
机器人