4. 【自动驾驶与机器人中的SLAM技术】点云中的拟合问题和K近邻

目录

  • [1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。](#1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。)
  • [2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。](#2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。)
  • [3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。](#3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。)
  • [4. 也欢迎大家来公众号--"过千帆"读书。](#4. 也欢迎大家来公众号--“过千帆”读书。)

1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。

在NearbyType中定义NEARBY14方法,并定义好nearby_grids_即可。

2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。


3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。

熟悉了nanoflann库中exemples中的例子,了解了构建kdtree以及K近邻搜索的方法。
nanoflann库构建kdtree需要的点云类型使用的是exemples中头文件utils.h中的定义,使用的K近邻搜索方法为knnSearch()函数。




评估结果:

由上图所示:
①三种方法实现的KNN算法的准确率和召回率均为1,未出现漏检与误检的情况;
②在build tree的耗时方面,自定义的kdtree构建耗时较大(7.9毫秒),而pcl库和nanoflann库在build tree方面耗时水平相当(分别为3.2毫秒和3.3毫秒);
③在KNN检索调用耗时方面,nanoflann的4.27毫秒要优于自定义实现的7.9毫秒,并且远远优于pcl版本的35.3毫秒.

4. 也欢迎大家来公众号--"过千帆"读书。

相关推荐
拾零吖10 分钟前
李宏毅 Deep Learning
人工智能·深度学习·机器学习
华芯邦13 分钟前
广东充电芯片助力新能源汽车车载系统升级
人工智能·科技·车载系统·汽车·制造
时空无限1 小时前
说说transformer 中的掩码矩阵以及为什么能掩盖住词语
人工智能·矩阵·transformer
查里王1 小时前
AI 3D 生成工具知识库:当前产品格局与测评总结
人工智能·3d
武子康2 小时前
AI-调查研究-76-具身智能 当机器人走进生活:具身智能对就业与社会结构的深远影响
人工智能·程序人生·ai·职场和发展·机器人·生活·具身智能
小鹿清扫日记2 小时前
从蛮力清扫到 “会看路”:室外清洁机器人的文明进阶
人工智能·ai·机器人·扫地机器人·具身智能·连合直租·有鹿巡扫机器人
shuidaoyuxing2 小时前
机器人防爆的详细讲解
机器人
fanstuck2 小时前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt
zhangfeng11333 小时前
win7 R 4.4.0和RStudio1.25的版本兼容性以及系统区域设置有关 导致Plots绘图面板被禁用,但是单独页面显示
开发语言·人工智能·r语言·生物信息
DogDaoDao3 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏