HMM与LTP词性标注之LTP介绍

文章目录







上图缺点:参数太多,中文语料库匮乏

注意力机制,相当于给每一个词赋予一个权重,权重越大的越重要。

bert的缺点:神经元太多,较慢。

LTP

如果只是需要做词性的识别,那么用LTP就可以了,由哈工大自主研发。

主页:http://ltp.ai/index.html







目前python主要用LTP,目前已经发展到4.0的版本。

在最后一个章节,就用LTP完成词性标注、包括分词,最后再把它整合成图谱,通过python自动插入到xxx中去,完成这么一系列的操作,

相关推荐
程序员打怪兽22 分钟前
详解YOLOv8网络结构
人工智能·深度学习
Yuer202522 分钟前
全国首例“AI 幻觉”侵权案判了:这不是 AI 准不准的问题,而是谁该为 AI 负责
人工智能·edca os·可控ai
一切尽在,你来37 分钟前
1.1 AI大模型应用开发和Langchain的关系
人工智能·langchain
Coder_Boy_1 小时前
基于Spring AI的分布式在线考试系统-事件处理架构实现方案
人工智能·spring boot·分布式·spring
Light601 小时前
智链未来:彭山物流园区从物理基建到数据智能体的全维度构建方案
人工智能·系统架构·数字孪生·智慧物流·实施路径·彭山项目
AI资源库1 小时前
GLM-4.7-Flash模型深入解析
人工智能·语言模型
一切尽在,你来1 小时前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
LYFlied1 小时前
AI大时代下前端跨端解决方案的现状与演进路径
前端·人工智能
深蓝电商API1 小时前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
.Katherine௰1 小时前
AI数字人模拟面试机器人
人工智能