FPGA模块——IIC协议(FPGA做主机操作24C64)

FPGA模块------IIC协议(FPGA做主机操作24C64)

EEPROM(24C64)

掉电不丢失,采用固定的读写协议。数据的稳定性和可重复擦写性突出

电路设计,可以配置24C64的地址

从器件进行开漏输出:输出低电平,输出高阻态来让上拉电路拉高给主机

传输的器件地址格式

发送字(寄存器)地址:

有16位,24C64实际用到13位寄存器地址

向器件写数据时序

单次写的协议:

连续写的协议:

向器件读数据时序

从当前地址读:

从当任意地址读:

要先向器件进行虚写命令,再进行读命令。

从任意地址连续读:

不读了主机FPGA进行非应答

IIC协议

当SCL和SDA为高,SDA突然拉低的时候,是起始信号(下降沿)。

当SCL为高时,SDA突然拉高,是结束信号(上升沿)。高位在前

重点是:SCL在低电平期间SDA可以进行数据变化,而SCL在高电平期间,SDA的数据要保持稳定。

FPGA主机代码

为了可适配性,iic用的都是用指定地址单次写(任意地址单次写)。

1.写:器件地址+写命令(8位)以及字节地址(8/16位)

2.写数据(8位)

指定地址单次读(任意地址单次读):

1.虚写:(器件地址+写命令)+ 字节地址(8/16位)

2.(起始信号)+(器件地址 + 读命令)

3.进行读数据(8位)

后面主机有个非应答,再发送结束信号

IIC读寄存器驱动(指定地址单次读写)

i2c_dri.v文件

(1)使用三段式状态机:

//1.同步时序描述状态转移, 把下个状态给当前状态。

always @(posedge dri_clk or negedge rst_n)

//2.组合逻辑判断状态转移条件。(哪个信号变化了要转状态)

always @(*)

//3.时序电路描述状态输出,写每个状态里面要输出什么。

always @(posedge dri_clk or negedge rst_n)

(2)使用此iic模块

输入:

1.触发iic运行的信号(1b)

2.字节地址位数信号(1b)

3.器件内寄存器地址(16b)

4.读/写控制位信号(1b)

5.要写的数据(8b)

输出:

1.读出的数据(8b)

2.iic一次操作完成信号(1b)

3.主机应答信号(报告是否正常)(1b)一直为0则是iic协议过程中一切正常,否则就输出1

外接器件:

SDA使用inout

SCL信号控制通信进程

c 复制代码
module i2c_dri
    #(
      parameter   SLAVE_ADDR = 7'b1010000   ,  //EEPROM从机地址
      parameter   CLK_FREQ   = 26'd50_000_000, //模块输入的时钟频率
      parameter   I2C_FREQ   = 18'd250_000     //IIC_SCL的时钟频率
    )
   (                                                            
    input                clk        ,    
    input                rst_n      ,   
                                         
    //i2c interface                      
    input                i2c_exec   ,  //I2C触发执行信号
    input                bit_ctrl   ,  //字地址位控制(16b/8b)
    input                i2c_rh_wl  ,  //I2C读写控制信号
    input        [15:0]  i2c_addr   ,  //I2C器件内地址
    input        [ 7:0]  i2c_data_w ,  //I2C要写的数据
    output  reg  [ 7:0]  i2c_data_r ,  //I2C读出的数据
    output  reg          i2c_done   ,  //I2C一次操作完成
    output  reg          i2c_ack    ,  //I2C应答标志 0:应答 1:未应答
    output  reg          scl        ,  //I2C的SCL时钟信号
    inout                sda        ,  //I2C的SDA信号
                                       
    //user interface                   
    output  reg          dri_clk       //驱动I2C操作的驱动时钟
     );

//localparam define
localparam  st_idle     = 8'b0000_0001; //空闲状态
localparam  st_sladdr   = 8'b0000_0010; //发送器件地址(slave address)
localparam  st_addr16   = 8'b0000_0100; //发送16位字地址
localparam  st_addr8    = 8'b0000_1000; //发送8位字地址
localparam  st_data_wr  = 8'b0001_0000; //写数据(8 bit)
localparam  st_addr_rd  = 8'b0010_0000; //发送器件地址读
localparam  st_data_rd  = 8'b0100_0000; //读数据(8 bit)
localparam  st_stop     = 8'b1000_0000; //结束I2C操作

//reg define
reg            sda_dir   ; //I2C数据(SDA)方向控制
reg            sda_out   ; //SDA输出信号
reg            st_done   ; //状态结束
reg            wr_flag   ; //写标志
reg    [ 6:0]  cnt       ; //计数
reg    [ 7:0]  cur_state ; //状态机当前状态
reg    [ 7:0]  next_state; //状态机下一状态
reg    [15:0]  addr_t    ; //地址
reg    [ 7:0]  data_r    ; //读取的数据
reg    [ 7:0]  data_wr_t ; //I2C需写的数据的临时寄存
reg    [ 9:0]  clk_cnt   ; //分频时钟计数

//wire define
wire          sda_in     ; //SDA输入信号
wire   [8:0]  clk_divide ; //模块驱动时钟的分频系数

//*****************************************************
//**                    main code
//*****************************************************

//SDA控制
assign  sda        = sda_dir ?  sda_out : 1'bz   ;  //SDA数据输出或高阻
assign  sda_in     = sda                         ;  //SDA数据输入
assign  clk_divide = (CLK_FREQ/I2C_FREQ) >> 2'd2 ;  //模块驱动时钟的分频系数

//生成I2C的SCL的四倍频率的驱动时钟用于驱动i2c的操作
always @(posedge clk or negedge rst_n) begin
    if(!rst_n) begin
        dri_clk <=  1'b0;
        clk_cnt <= 10'd0;
    end
    else if(clk_cnt == (clk_divide[8:1] - 9'd1)) begin
        clk_cnt <= 10'd0;
        dri_clk <= ~dri_clk;
    end
    else
        clk_cnt <= clk_cnt + 10'b1;
end

//(三段式状态机)同步时序描述状态转移
always @(posedge dri_clk or negedge rst_n) begin
    if(!rst_n)
        cur_state <= st_idle;
    else
        cur_state <= next_state;
end

//组合逻辑判断状态转移条件
always @(*) begin
    next_state = st_idle;
    case(cur_state)
        st_idle: begin                          //空闲状态
           if(i2c_exec) begin
               next_state = st_sladdr;
           end
           else
               next_state = st_idle;
        end
        st_sladdr: begin
            if(st_done) begin
                if(bit_ctrl)                    //判断是16位还是8位字地址
                   next_state = st_addr16;
                else
                   next_state = st_addr8 ;
            end
            else
                next_state = st_sladdr;
        end
        st_addr16: begin                        //写16位字地址
            if(st_done) begin
                next_state = st_addr8;
            end
            else begin
                next_state = st_addr16;
            end
        end
        st_addr8: begin                         //8位字地址
            if(st_done) begin
                if(wr_flag==1'b0)               //读写判断
                    next_state = st_data_wr;
                else
                    next_state = st_addr_rd;
            end
            else begin
                next_state = st_addr8;
            end
        end
        st_data_wr: begin                       //写数据(8 bit)
            if(st_done)
                next_state = st_stop;
            else
                next_state = st_data_wr;
        end
        st_addr_rd: begin                       //写地址以进行读数据
            if(st_done) begin
                next_state = st_data_rd;
            end
            else begin
                next_state = st_addr_rd;
            end
        end
        st_data_rd: begin                       //读取数据(8 bit)
            if(st_done)
                next_state = st_stop;
            else
                next_state = st_data_rd;
        end
        st_stop: begin                          //结束I2C操作
            if(st_done)
                next_state = st_idle;
            else
                next_state = st_stop ;
        end
        default: next_state= st_idle;
    endcase
end

//时序电路描述状态输出
always @(posedge dri_clk or negedge rst_n) begin
    //复位初始化
    if(!rst_n) begin
        scl       <= 1'b1;
        sda_out   <= 1'b1;
        sda_dir   <= 1'b1;                          
        i2c_done  <= 1'b0;                          
        i2c_ack   <= 1'b0;                          
        cnt       <= 7'b0;                          
        st_done   <= 1'b0;                          
        data_r    <= 8'b0;                          
        i2c_data_r<= 8'b0;                          
        wr_flag   <= 1'b0;                          
        addr_t    <= 16'b0;                          
        data_wr_t <= 8'b0;                          
    end                                              
    else begin                                       
        st_done <= 1'b0 ;                            
        cnt     <= cnt +7'b1 ;                       
        case(cur_state)                              
             st_idle: begin                          //空闲状态
                scl     <= 1'b1;                     
                sda_out <= 1'b1;                     
                sda_dir <= 1'b1;                     
                i2c_done<= 1'b0;                     
                cnt     <= 7'b0;               
                if(i2c_exec) begin                   
                    wr_flag   <= i2c_rh_wl ;         
                    addr_t    <= i2c_addr  ;         
                    data_wr_t <= i2c_data_w;  
                    i2c_ack   <= 1'b0;                      
                end                                  
            end                                      
            st_sladdr: begin                         //写地址(器件地址和字地址)
                case(cnt)                            
                    7'd1 : sda_out <= 1'b0;          //开始I2C
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= SLAVE_ADDR[5]; 
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= SLAVE_ADDR[4]; 
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= SLAVE_ADDR[3]; 
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= SLAVE_ADDR[2]; 
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= SLAVE_ADDR[1]; 
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= SLAVE_ADDR[0]; 
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: sda_out <= 1'b0;          //0:写
                    7'd33: scl <= 1'b1;              
                    7'd35: scl <= 1'b0;              
                    7'd36: begin                     
                        sda_dir <= 1'b0;             
                        sda_out <= 1'b1;                         
                    end                              
                    7'd37: scl     <= 1'b1;            
                    7'd38: begin                     //从机应答 
                        st_done <= 1'b1;
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位     
                    end                                          
                    7'd39: begin                     
                        scl <= 1'b0;                 
                        cnt <= 7'b0;                 
                    end                              
                    default :  ;                     
                endcase                              
            end                                      
            st_addr16: begin                         
                case(cnt)                            
                    7'd0 : begin                     
                        sda_dir <= 1'b1 ;            
                        sda_out <= addr_t[15];       //传送字地址
                    end                              
                    7'd1 : scl <= 1'b1;              
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= addr_t[14];    
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= addr_t[13];    
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= addr_t[12];    
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= addr_t[11];    
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= addr_t[10];    
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= addr_t[9];     
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= addr_t[8];     
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: begin                     
                        sda_dir <= 1'b0;             
                        sda_out <= 1'b1;   
                    end                              
                    7'd33: scl  <= 1'b1;             
                    7'd34: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end        
                    7'd35: begin                     
                        scl <= 1'b0;                 
                        cnt <= 7'b0;                 
                    end                              
                    default :  ;                     
                endcase                              
            end                                      
            st_addr8: begin                          
                case(cnt)                            
                    7'd0: begin                      
                       sda_dir <= 1'b1 ;             
                       sda_out <= addr_t[7];         //字地址
                    end                              
                    7'd1 : scl <= 1'b1;              
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= addr_t[6];     
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= addr_t[5];     
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= addr_t[4];     
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= addr_t[3];     
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= addr_t[2];     
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= addr_t[1];     
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= addr_t[0];     
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: begin                     
                        sda_dir <= 1'b0;         
                        sda_out <= 1'b1;                    
                    end                              
                    7'd33: scl     <= 1'b1;          
                    7'd34: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end   
                    7'd35: begin                     
                        scl <= 1'b0;                 
                        cnt <= 7'b0;                 
                    end                              
                    default :  ;                     
                endcase                              
            end                                      
            st_data_wr: begin                        //写数据(8 bit)
                case(cnt)                            
                    7'd0: begin                      
                        sda_dir <= 1'b1;
                        sda_out <= data_wr_t[7];     //I2C写8位数据
                    end                              
                    7'd1 : scl <= 1'b1;              
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= data_wr_t[6];  
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= data_wr_t[5];  
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= data_wr_t[4];  
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= data_wr_t[3];  
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= data_wr_t[2];  
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= data_wr_t[1];  
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= data_wr_t[0];  
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: begin                     
                        sda_dir <= 1'b0;           
                        sda_out <= 1'b1;                              
                    end                              
                    7'd33: scl <= 1'b1;              
                    7'd34: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end          
                    7'd35: begin                     
                        scl  <= 1'b0;                
                        cnt  <= 7'b0;                
                    end                              
                    default  :  ;                    
                endcase                              
            end                                      
            st_addr_rd: begin                        //写地址以进行读数据
                case(cnt)                            
                    7'd0 : begin                     
                        sda_dir <= 1'b1;             
                        sda_out <= 1'b1;             
                    end                              
                    7'd1 : scl <= 1'b1;              
                    7'd2 : sda_out <= 1'b0;          //重新开始
                    7'd3 : scl <= 1'b0;              
                    7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址
                    7'd5 : scl <= 1'b1;              
                    7'd7 : scl <= 1'b0;              
                    7'd8 : sda_out <= SLAVE_ADDR[5]; 
                    7'd9 : scl <= 1'b1;              
                    7'd11: scl <= 1'b0;              
                    7'd12: sda_out <= SLAVE_ADDR[4]; 
                    7'd13: scl <= 1'b1;              
                    7'd15: scl <= 1'b0;              
                    7'd16: sda_out <= SLAVE_ADDR[3]; 
                    7'd17: scl <= 1'b1;              
                    7'd19: scl <= 1'b0;              
                    7'd20: sda_out <= SLAVE_ADDR[2]; 
                    7'd21: scl <= 1'b1;              
                    7'd23: scl <= 1'b0;              
                    7'd24: sda_out <= SLAVE_ADDR[1]; 
                    7'd25: scl <= 1'b1;              
                    7'd27: scl <= 1'b0;              
                    7'd28: sda_out <= SLAVE_ADDR[0]; 
                    7'd29: scl <= 1'b1;              
                    7'd31: scl <= 1'b0;              
                    7'd32: sda_out <= 1'b1;          //1:读
                    7'd33: scl <= 1'b1;              
                    7'd35: scl <= 1'b0;              
                    7'd36: begin                     
                        sda_dir <= 1'b0;            
                        sda_out <= 1'b1;                    
                    end
                    7'd37: scl     <= 1'b1;
                    7'd38: begin                     //从机应答
                        st_done <= 1'b1;     
                        if(sda_in == 1'b1)           //高电平表示未应答
                            i2c_ack <= 1'b1;         //拉高应答标志位    
                    end   
                    7'd39: begin
                        scl <= 1'b0;
                        cnt <= 7'b0;
                    end
                    default : ;
                endcase
            end
            st_data_rd: begin                        //读取数据(8 bit)
                case(cnt)
                    7'd0: sda_dir <= 1'b0;
                    7'd1: begin
                        data_r[7] <= sda_in;
                        scl       <= 1'b1;
                    end
                    7'd3: scl  <= 1'b0;
                    7'd5: begin
                        data_r[6] <= sda_in ;
                        scl       <= 1'b1   ;
                    end
                    7'd7: scl  <= 1'b0;
                    7'd9: begin
                        data_r[5] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd11: scl  <= 1'b0;
                    7'd13: begin
                        data_r[4] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd15: scl  <= 1'b0;
                    7'd17: begin
                        data_r[3] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd19: scl  <= 1'b0;
                    7'd21: begin
                        data_r[2] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd23: scl  <= 1'b0;
                    7'd25: begin
                        data_r[1] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd27: scl  <= 1'b0;
                    7'd29: begin
                        data_r[0] <= sda_in;
                        scl       <= 1'b1  ;
                    end
                    7'd31: scl  <= 1'b0;
                    7'd32: begin
                        sda_dir <= 1'b1;             
                        sda_out <= 1'b1;
                    end
                    7'd33: scl     <= 1'b1;
                    7'd34: st_done <= 1'b1;          //非应答
                    7'd35: begin
                        scl <= 1'b0;
                        cnt <= 7'b0;
                        i2c_data_r <= data_r;
                    end
                    default  :  ;
                endcase
            end
            st_stop: begin                           //结束I2C操作
                case(cnt)
                    7'd0: begin
                        sda_dir <= 1'b1;             //结束I2C
                        sda_out <= 1'b0;
                    end
                    7'd1 : scl     <= 1'b1;
                    7'd3 : sda_out <= 1'b1;
                    7'd15: st_done <= 1'b1;
                    7'd16: begin
                        cnt      <= 7'b0;
                        i2c_done <= 1'b1;            //向上层模块传递I2C结束信号
                    end
                    default  : ;
                endcase
            end
        endcase
    end
end

endmodule

使用 IIC模块

就是根据上面的输入和输出信号,进行对应的使用

c 复制代码
module e2prom_rw(
    input                 clk        , //时钟信号
    input                 rst_n      , //复位信号

    //i2c interface
    output   reg          i2c_rh_wl  , //I2C读写控制信号
    output   reg          i2c_exec   , //I2C触发执行信号
    output   reg  [15:0]  i2c_addr   , //I2C器件内地址
    output   reg  [ 7:0]  i2c_data_w , //I2C要写的数据
    input         [ 7:0]  i2c_data_r , //I2C读出的数据
    input                 i2c_done   , //I2C一次操作完成
    input                 i2c_ack    , //I2C应答标志

    //user interface
    output   reg          rw_done    , //E2PROM读写测试完成
    output   reg          rw_result    //E2PROM读写测试结果 0:失败 1:成功
);

//parameter define
//EEPROM写数据需要添加间隔时间,读数据则不需要
parameter      WR_WAIT_TIME = 14'd5000; //写入间隔时间
parameter      MAX_BYTE     = 16'd256 ; //读写测试的字节个数

//reg define
reg   [1:0]    flow_cnt  ; //状态流控制
reg   [13:0]   wait_cnt  ; //延时计数器

//*****************************************************
//**                    main code
//*****************************************************

//EEPROM读写测试,先写后读,并比较读出的值与写入的值是否一致
always @(posedge clk or negedge rst_n) begin
    if(!rst_n) begin
        flow_cnt   <= 2'b0;
        i2c_rh_wl  <= 1'b0;
        i2c_exec   <= 1'b0;
        i2c_addr   <= 16'b0;
        i2c_data_w <= 8'b0;
        wait_cnt   <= 14'b0;
        rw_done    <= 1'b0;
        rw_result  <= 1'b0;        
    end
    else begin
        i2c_exec <= 1'b0;
        rw_done  <= 1'b0;
        case(flow_cnt)
            2'd0 : begin                                  
                wait_cnt <= wait_cnt + 14'b1;               //延时计数
                if(wait_cnt == (WR_WAIT_TIME - 14'b1)) begin  //EEPROM写操作延时完成
                    wait_cnt <= 14'b0;
                    if(i2c_addr == MAX_BYTE) begin         //256个字节写入完成
                        i2c_addr  <= 16'b0;
                        i2c_rh_wl <= 1'b1;
                        flow_cnt  <= 2'd2;
                    end
                    else begin
                        flow_cnt <= flow_cnt + 2'b1;
                        i2c_exec <= 1'b1;
                    end
                end
            end
            2'd1 : begin
                if(i2c_done == 1'b1) begin                  //EEPROM单次写入完成
                    flow_cnt   <= 2'd0;
                    i2c_addr   <= i2c_addr + 16'b1;           //地址0~255分别写入
                    i2c_data_w <= i2c_data_w + 8'b1;         //数据0~255
                end    
            end
            2'd2 : begin                                   
                flow_cnt <= flow_cnt + 2'b1;
                i2c_exec <= 1'b1;
            end    
            2'd3 : begin
                if(i2c_done == 1'b1) begin                 //EEPROM单次读出完成
                    //读出的值错误或者I2C未应答,读写测试失败
                    if((i2c_addr[7:0] != i2c_data_r) || (i2c_ack == 1'b1)) begin
                        rw_done <= 1'b1;
                        rw_result <= 1'b0;
                    end
                    else if(i2c_addr == (MAX_BYTE - 16'b1))begin //读写测试成功
                        rw_done   <= 1'b1;
                        rw_result <= 1'b1;
                    end    
                    else begin
                        flow_cnt <= 2'd2;
                        i2c_addr <= i2c_addr + 16'b1;
                    end
                end                 
            end
            default : ;
        endcase    
    end
end    

endmodule
相关推荐
上理考研周导师9 小时前
第二章 虚拟仪器及其构成原理
fpga开发
FPGA技术实战11 小时前
《探索Zynq MPSoC》学习笔记(二)
fpga开发·mpsoc
bigbig猩猩21 小时前
FPGA(现场可编程门阵列)的时序分析
fpga开发
Terasic友晶科技1 天前
第2篇 使用Intel FPGA Monitor Program创建基于ARM处理器的汇编或C语言工程<二>
fpga开发·汇编语言和c语言
码农阿豪1 天前
基于Zynq FPGA对雷龙SD NAND的测试
fpga开发·sd nand·spi nand·spi nand flash·工业级tf卡·嵌入式tf卡
江山如画,佳人北望1 天前
EDA技术简介
fpga开发
淘晶驰AK1 天前
电子设计竞赛准备经历分享
嵌入式硬件·fpga开发
最好有梦想~1 天前
FPGA时序分析和约束学习笔记(4、IO传输模型)
笔记·学习·fpga开发
檀越剑指大厂1 天前
【基于Zynq FPGA对雷龙SD NAND的测试】
fpga开发