吴恩达《机器学习》8-7:多元分类

在机器学习领域,经常会遇到不止两个类别的分类问题。这时,需要使用多类分类技术。本文将深入探讨多类分类,并结合学习内容中的示例,了解神经网络在解决这类问题时的应用。

一、理解多类分类

多类分类问题是指当目标有多个类别时,需要对输入数据进行分类。在学习的内容中,以识别物体为例,我们要区分路人、汽车、摩托车和卡车这四个类别。对于这样的问题,不能简单地使用二元分类的方法,而是需要将神经网络扩展到支持多类别输出。

二、神经网络结构

当面对多类分类问题时,需要调整神经网络的结构以适应输出多个类别的需求。在学习的内容中,给出了一个可能的神经网络结构示例:

  • 输入层:接受输入向量 x,在示例中有三个维度。
  • 隐藏层:可以有一个或多个隐藏层,用于学习数据的特征表示。
  • 输出层:有四个神经元,分别表示四个类别。输出层的激活函数通常选择 softmax 函数,将输出转化为概率分布。

每个神经元的输出值表示对应类别的概率。例如,输出层可能为[a,b,c,d]T,其中只有一个元素为1,表示当前数据属于某一类。

三、训练与损失函数

在多类分类的神经网络中,常用的损失函数是交叉熵损失函数。该损失函数有助于最小化预测概率与实际类别之间的差异。通过使用梯度下降等优化算法,神经网络可以逐渐调整权重和偏差,提高对多类别的分类准确性。

四、应用实例

在学习的内容中,以识别物体的例子说明了如何用神经网络解决多类分类问题。通过适当设计神经网络结构和选择合适的激活函数,我们能够让神经网络灵活地应对复杂的分类任务。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
叫我:松哥7 小时前
基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型
大数据·python·深度学习·机器学习·spark·flask·lstm
菜的不敢吱声10 小时前
swift学习第4天
服务器·学习·swift
孙严Pay14 小时前
快捷支付:高效安全的在线支付新选择
笔记·科技·计算机网络·其他·微信
じ☆冷颜〃14 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
想进部的张同学14 小时前
hilinux-3599---设备学习---以及部署yolo
学习·yolo·海思
HyperAI超神经15 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
Echo_NGC223715 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
摆烂咸鱼~15 小时前
机器学习(10)
人工智能·机器学习·支持向量机
数据皮皮侠AI15 小时前
上市公司股票名称相似度(1990-2025)
大数据·人工智能·笔记·区块链·能源·1024程序员节
yuhaiqun198916 小时前
学服务器训练AI模型:5步路径助力高效入门
运维·服务器·人工智能·笔记·机器学习·ai