吴恩达《机器学习》8-7:多元分类

在机器学习领域,经常会遇到不止两个类别的分类问题。这时,需要使用多类分类技术。本文将深入探讨多类分类,并结合学习内容中的示例,了解神经网络在解决这类问题时的应用。

一、理解多类分类

多类分类问题是指当目标有多个类别时,需要对输入数据进行分类。在学习的内容中,以识别物体为例,我们要区分路人、汽车、摩托车和卡车这四个类别。对于这样的问题,不能简单地使用二元分类的方法,而是需要将神经网络扩展到支持多类别输出。

二、神经网络结构

当面对多类分类问题时,需要调整神经网络的结构以适应输出多个类别的需求。在学习的内容中,给出了一个可能的神经网络结构示例:

  • 输入层:接受输入向量 x,在示例中有三个维度。
  • 隐藏层:可以有一个或多个隐藏层,用于学习数据的特征表示。
  • 输出层:有四个神经元,分别表示四个类别。输出层的激活函数通常选择 softmax 函数,将输出转化为概率分布。

每个神经元的输出值表示对应类别的概率。例如,输出层可能为[a,b,c,d]T,其中只有一个元素为1,表示当前数据属于某一类。

三、训练与损失函数

在多类分类的神经网络中,常用的损失函数是交叉熵损失函数。该损失函数有助于最小化预测概率与实际类别之间的差异。通过使用梯度下降等优化算法,神经网络可以逐渐调整权重和偏差,提高对多类别的分类准确性。

四、应用实例

在学习的内容中,以识别物体的例子说明了如何用神经网络解决多类分类问题。通过适当设计神经网络结构和选择合适的激活函数,我们能够让神经网络灵活地应对复杂的分类任务。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
宋辰月7 小时前
学习react第一天
javascript·学习·react.js
笨鸟笃行7 小时前
百日挑战——单词篇(第十八天)
学习
好奇龙猫7 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段-二阶段(16):文法和单词-第四课
学习
奋斗的牛马8 小时前
硬件基础知识-电容(一)
单片机·嵌入式硬件·学习·fpga开发·信息与通信
Pluchon8 小时前
硅基计划6.0 JavaEE 叁 文件IO
java·学习·java-ee·文件操作·io流
ChoSeitaku8 小时前
线代强化NO4|行列式的计算
线性代数·机器学习·矩阵
9ilk8 小时前
【基于one-loop-per-thread的高并发服务器】--- 自主实现HttpServer
linux·运维·服务器·c++·笔记·后端
Nuyoah11klay9 小时前
华清远见25072班单片机基础学习day1
单片机·嵌入式硬件·学习
大白的编程日记.9 小时前
【高阶数据结构学习笔记】高阶数据结构之B树B+树B*树
数据结构·笔记·学习
影林握雪9 小时前
M|小丑回魂 It (2017)
经验分享·笔记·其他·生活