吴恩达《机器学习》8-7:多元分类

在机器学习领域,经常会遇到不止两个类别的分类问题。这时,需要使用多类分类技术。本文将深入探讨多类分类,并结合学习内容中的示例,了解神经网络在解决这类问题时的应用。

一、理解多类分类

多类分类问题是指当目标有多个类别时,需要对输入数据进行分类。在学习的内容中,以识别物体为例,我们要区分路人、汽车、摩托车和卡车这四个类别。对于这样的问题,不能简单地使用二元分类的方法,而是需要将神经网络扩展到支持多类别输出。

二、神经网络结构

当面对多类分类问题时,需要调整神经网络的结构以适应输出多个类别的需求。在学习的内容中,给出了一个可能的神经网络结构示例:

  • 输入层:接受输入向量 x,在示例中有三个维度。
  • 隐藏层:可以有一个或多个隐藏层,用于学习数据的特征表示。
  • 输出层:有四个神经元,分别表示四个类别。输出层的激活函数通常选择 softmax 函数,将输出转化为概率分布。

每个神经元的输出值表示对应类别的概率。例如,输出层可能为[a,b,c,d]T,其中只有一个元素为1,表示当前数据属于某一类。

三、训练与损失函数

在多类分类的神经网络中,常用的损失函数是交叉熵损失函数。该损失函数有助于最小化预测概率与实际类别之间的差异。通过使用梯度下降等优化算法,神经网络可以逐渐调整权重和偏差,提高对多类别的分类准确性。

四、应用实例

在学习的内容中,以识别物体的例子说明了如何用神经网络解决多类分类问题。通过适当设计神经网络结构和选择合适的激活函数,我们能够让神经网络灵活地应对复杂的分类任务。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
jane_xing18 小时前
【Hello-Agents】学习笔记(一)
笔记·ai agent
王锋(oxwangfeng)18 小时前
自动驾驶领域OCC标注
人工智能·机器学习·自动驾驶
小鸡吃米…19 小时前
机器学习中的分类算法
人工智能·机器学习·分类
科技林总19 小时前
【系统分析师】4.6 构件与中间件
学习
23124_8019 小时前
CTFshow学习记录
学习
星火开发设计19 小时前
C++ 函数定义与调用:程序模块化的第一步
java·开发语言·c++·学习·函数·知识
嗯嗯=19 小时前
STM32单片机学习篇3
stm32·单片机·学习
43v3rY0unG19 小时前
哈希表学习
学习·哈希算法·散列表
AI_零食20 小时前
鸿蒙跨端框架 Flutter 学习 Day 6:异步编程:等待的艺术
学习·flutter·华为·交互·harmonyos·鸿蒙
梁洪飞20 小时前
通过链接文件和Start.S学习armv7
linux·arm开发·嵌入式硬件·学习·arm