吴恩达《机器学习》8-7:多元分类

在机器学习领域,经常会遇到不止两个类别的分类问题。这时,需要使用多类分类技术。本文将深入探讨多类分类,并结合学习内容中的示例,了解神经网络在解决这类问题时的应用。

一、理解多类分类

多类分类问题是指当目标有多个类别时,需要对输入数据进行分类。在学习的内容中,以识别物体为例,我们要区分路人、汽车、摩托车和卡车这四个类别。对于这样的问题,不能简单地使用二元分类的方法,而是需要将神经网络扩展到支持多类别输出。

二、神经网络结构

当面对多类分类问题时,需要调整神经网络的结构以适应输出多个类别的需求。在学习的内容中,给出了一个可能的神经网络结构示例:

  • 输入层:接受输入向量 x,在示例中有三个维度。
  • 隐藏层:可以有一个或多个隐藏层,用于学习数据的特征表示。
  • 输出层:有四个神经元,分别表示四个类别。输出层的激活函数通常选择 softmax 函数,将输出转化为概率分布。

每个神经元的输出值表示对应类别的概率。例如,输出层可能为[a,b,c,d]T,其中只有一个元素为1,表示当前数据属于某一类。

三、训练与损失函数

在多类分类的神经网络中,常用的损失函数是交叉熵损失函数。该损失函数有助于最小化预测概率与实际类别之间的差异。通过使用梯度下降等优化算法,神经网络可以逐渐调整权重和偏差,提高对多类别的分类准确性。

四、应用实例

在学习的内容中,以识别物体的例子说明了如何用神经网络解决多类分类问题。通过适当设计神经网络结构和选择合适的激活函数,我们能够让神经网络灵活地应对复杂的分类任务。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
orion-orion5 小时前
贝叶斯机器学习:高斯分布及其共轭先验
机器学习·统计学习
bohu837 小时前
OpenCV笔记3-图像修复
笔记·opencv·图像修复·亮度增强·图片磨皮
余炜yw7 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习
大丈夫立于天地间8 小时前
ISIS基础知识
网络·网络协议·学习·智能路由器·信息与通信
doubt。8 小时前
【BUUCTF】[RCTF2015]EasySQL1
网络·数据库·笔记·mysql·安全·web安全
赛丽曼8 小时前
机器学习-分类算法评估标准
人工智能·机器学习·分类
Chambor_mak9 小时前
stm32单片机个人学习笔记14(USART串口数据包)
stm32·单片机·学习
Zelotz9 小时前
线段树与矩阵
笔记
汇能感知9 小时前
光谱相机在智能冰箱的应用原理与优势
经验分享·笔记·科技