吴恩达《机器学习》8-7:多元分类

在机器学习领域,经常会遇到不止两个类别的分类问题。这时,需要使用多类分类技术。本文将深入探讨多类分类,并结合学习内容中的示例,了解神经网络在解决这类问题时的应用。

一、理解多类分类

多类分类问题是指当目标有多个类别时,需要对输入数据进行分类。在学习的内容中,以识别物体为例,我们要区分路人、汽车、摩托车和卡车这四个类别。对于这样的问题,不能简单地使用二元分类的方法,而是需要将神经网络扩展到支持多类别输出。

二、神经网络结构

当面对多类分类问题时,需要调整神经网络的结构以适应输出多个类别的需求。在学习的内容中,给出了一个可能的神经网络结构示例:

  • 输入层:接受输入向量 x,在示例中有三个维度。
  • 隐藏层:可以有一个或多个隐藏层,用于学习数据的特征表示。
  • 输出层:有四个神经元,分别表示四个类别。输出层的激活函数通常选择 softmax 函数,将输出转化为概率分布。

每个神经元的输出值表示对应类别的概率。例如,输出层可能为[a,b,c,d]T,其中只有一个元素为1,表示当前数据属于某一类。

三、训练与损失函数

在多类分类的神经网络中,常用的损失函数是交叉熵损失函数。该损失函数有助于最小化预测概率与实际类别之间的差异。通过使用梯度下降等优化算法,神经网络可以逐渐调整权重和偏差,提高对多类别的分类准确性。

四、应用实例

在学习的内容中,以识别物体的例子说明了如何用神经网络解决多类分类问题。通过适当设计神经网络结构和选择合适的激活函数,我们能够让神经网络灵活地应对复杂的分类任务。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
烤麻辣烫6 小时前
23种设计模式(新手)-5里氏替换原则
java·学习·设计模式·intellij-idea·里氏替换原则
AA陈超7 小时前
ASC学习笔记0007:用于与GameplayAbilities系统交互的核心ActorComponent
c++·笔记·学习·ue5·虚幻引擎
智者知已应修善业8 小时前
【51单片机:两边向中间流水:即两边先点亮然后熄灭,次边的点亮再熄灭,直到最中间的两个点亮再熄灭,然后重复动作。】2023-3-4
c语言·c++·经验分享·笔记·嵌入式硬件·算法·51单片机
2301_821727179 小时前
nfs服务
网络·笔记
报错小能手9 小时前
C++笔记 bind函数模板
开发语言·c++·笔记
老蒋新思维9 小时前
紧跟郑滢轩,以 “学习力 +” 驱动 AI 与 IP 商业变革
网络·人工智能·学习·tcp/ip·企业管理·创始人ip·创客匠人
小狗照亮每一天10 小时前
【菜狗看背景】自动驾驶发展背景——20251117
人工智能·机器学习·自动驾驶
大白IT10 小时前
智能驾驶:从感知到规控的自动驾驶系统全解析
人工智能·机器学习·自动驾驶
数据与后端架构提升之路10 小时前
英伟达的 Alpamayo-R1:利用因果链推理赋能自动驾驶模型和数据工程剖析
人工智能·机器学习·自动驾驶