Bert浅谈

优点

首先,bert的创新点在于利用了双向transformer,这就跟openai的gpt有区别,gpt是采用单向的transformer,而作者认为双向transformer更能够融合上下文的信息。这里双向和单向的区别在于,单向只跟当前位置之前的tocken相连,双向与当前位置之后的tocken也有连接。跟ELMo相比的优势在于,transformer对特征的提取能力比lstm要强得多。

模型输入

首先是对输入的句子做tocken embedding,也就是将句子映射为一维向量,可以是word2vec的结果,猜想一下,如果不是维度过高也可以是one-hot,第二部分segment embedding 是在模型训练过程中自动学习得到的,猜想这里可以用全连接,也可以用transformer,最后是position embedding,主要用以区别"我喜欢妈妈"和"妈妈喜欢我",虽然这两句话的单词一样,但是因为位置不同,所以含义不同。

模型参数

BERTBASE (L=12, H=768, A=12, Total Parameters=110M)

BERTLARGE (L=24, H=1024,

A=16, Total Parameters=340M).

L表示层数,H为隐层维度,A为注意力头的数量

两种任务

Masked LM

这个任务主要是随机将某句话的某几个位置做处理,这里的处理可能是3种,80%的概率用[mask]代替,10%的概率保留原来的单词,10%的概率用其他单词代替。就像是英语考试中的完形填空

Next Sentence Prediction (NSP)

主要利用输入的第一个tocken[cls]和中间的tocken[sep],其中cls用来表示后面一句是否为前一句的下一句,sep表示两个句子的间隔。从文本语料库中随机选择 50% 正确语句对和 50% 错误语句对进行训练。就像是与语文中的句子排序。

参考:BERT模型的详细介绍

相关推荐
新加坡内哥谈技术32 分钟前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
武子康41 分钟前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
Sirius Wu2 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌5442 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running2 小时前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界3 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔4 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起4 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰4 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
boonya4 小时前
ChatBox AI 中配置阿里云百炼模型实现聊天对话
人工智能·阿里云·云计算·chatboxai