矩阵的模和内积

模和内积

向量

设存在一个向量 X = { x 1 , x 2 , x 3 ... x n } T X=\{x_1,x_2,x_3\dots x_n\}^T X={x1,x2,x3...xn}T

P范数
∣ ∣ X ∣ ∣ P = ∑ i = 1 n ∣ x i ∣ p p ||X||P=\sqrt[p]{\sum{i=1}^{n}{|x_i|}^p} ∣∣X∣∣P=pi=1∑n∣xi∣p
1范数(曼哈顿距离)
∣ ∣ X ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||X||1=\sum{i=1}^n|x_i| ∣∣X∣∣1=i=1∑n∣xi∣
2范数(欧式距离)
∣ ∣ X ∣ ∣ = ∑ i = 1 n x i 2 ||X||=\sqrt{\sum_{i=1}^{n}{x_i}^2} ∣∣X∣∣=i=1∑nxi2

同时2范数记为向量的模 ,即 ∣ ∣ X ∣ ∣ ||X|| ∣∣X∣∣

正无穷范数
∣ ∣ X ∣ ∣ + ∞ = max ⁡ ( ∣ x i ∣ ) ||X||{+\infty}=\max(|x_i|) ∣∣X∣∣+∞=max(∣xi∣)
负无穷范数
∣ ∣ X ∣ ∣ − ∞ = min ⁡ ( x i ) ||X||
{-\infty}=\min(x_i) ∣∣X∣∣−∞=min(xi)
内积

设存在两个向量 X = { x 1 , x 2 , x 3 ... x n } T , Y = { y 1 , y 2 , y 3 ... y n } T X=\{x_1,x_2,x_3\dots x_n\}^T,Y=\{y_1,y_2,y_3\dots y_n\}^T X={x1,x2,x3...xn}T,Y={y1,y2,y3...yn}T,则向量 X , Y X,Y X,Y的内积记为 < X , Y > = X T Y <X,Y>=X^TY <X,Y>=XTY

其中 < X , a Y > = a < X , Y > , < X , Y + Z > = < X , Y > + < X , Z > <X,aY>=a<X,Y>,<X,Y+Z>=<X,Y>+<X,Z> <X,aY>=a<X,Y>,<X,Y+Z>=<X,Y>+<X,Z>

矩阵

设存在一个矩阵 A A A
A = [ a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n m ] A= \begin{bmatrix} a_{11}&a_{12}&\cdots& a_{1m}\\ a_{21}&a_{22}&\cdots &a_{2m}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots &a_{nm} \end{bmatrix} A= a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1ma2m⋮anm

F范数
∣ ∣ A ∣ ∣ F = ∑ i = 1 n ∑ j = 1 m ∣ a i j ∣ 2 ||A||F=\sqrt{\sum{i=1}^{n}\sum_{j=1}^{m}{|a_{ij}|}^2} ∣∣A∣∣F=i=1∑nj=1∑m∣aij∣2
1范数(曼哈顿距离)
∣ ∣ A ∣ ∣ 1 = max ⁡ j ∑ i = 1 n ∣ a i j ∣ ||A||1=\max_j\sum{i=1}^n|a_{ij}| ∣∣A∣∣1=jmaxi=1∑n∣aij∣
2范数(欧式距离)
∣ ∣ A ∣ ∣ 2 = λ m a x ∣ ∣ A − 1 ∣ ∣ 2 = 1 λ m i n \begin{aligned} ||A||2&=\sqrt{\lambda{max}}\\ ||A^{-1}||2&=\frac{1}{\sqrt{\lambda{min}}} \end{aligned} ∣∣A∣∣2∣∣A−1∣∣2=λmax =λmin 1

其中 λ m a x \lambda_{max} λmax为矩阵 A T A A^TA ATA的最大的特征值

无穷范数
∣ ∣ A ∣ ∣ ∞ = max ⁡ i ∑ j = 1 m ( ∣ a i j ∣ ) ||A||{\infty}=\max_i\sum{j=1}^{m}(|a_{ij}|) ∣∣A∣∣∞=imaxj=1∑m(∣aij∣)
内积

设存在两个矩阵 A n m , B n t A_{nm},B_{nt} Anm,Bnt,则矩阵 A , B A,B A,B的内积记为 < A , B > = A T B <A,B>=A^TB <A,B>=ATB

满足以下条件的集合称为正交集
⟨ u i ∣ u j ⟩ = { 1 when i = j , 0 when i ≠ j . \left.\langle\mathbf{u}_i|\mathbf{u}_j\rangle=\left\{\begin{matrix}1&\text{when }i=j,\\0&\text{when }i\neq j.\end{matrix}\right.\right. ⟨ui∣uj⟩={10when i=j,when i=j.

其中来自n维空间含有n个向量的正交集一定是该n纬空间的基,正交集一定是线性无关的

傅里叶表示

若 B = { u 1 , u 2 , ... , u n } \mathcal{B}=\{\mathbf{u}{1},\mathbf{u}{2},\ldots,\mathbf{u}_{n}\} B={u1,u2,...,un}是内积空间 V V V 的一个正交基,对每一个 x x x都可以表示为
x = ⟨ u 1 ∣ x ⟩ u 1 + ⟨ u 2 ∣ x ⟩ u 2 + ⋯ + ⟨ u n ∣ x ⟩ u n . \mathbf{x}=\left\langle\mathbf{u}_1|\mathbf{x}\right\rangle\mathbf{u}_1+\left\langle\mathbf{u}_2|\mathbf{x}\right\rangle\mathbf{u}_2+\cdots+\left\langle\mathbf{u}_n|\mathbf{x}\right\rangle\mathbf{u}_n. x=⟨u1∣x⟩u1+⟨u2∣x⟩u2+⋯+⟨un∣x⟩un.

这被称为 X X X的傅里叶表示,其 ξ i = ⟨ u i ∣ x ⟩ \xi_i=\left\langle\mathbf{u}_i|\mathbf{x}\right\rangle ξi=⟨ui∣x⟩被称为 X X X 在 B \mathfrak B B下的坐标,他们是傅立叶系数

相关推荐
星沁城10 小时前
240. 搜索二维矩阵 II
java·线性代数·算法·leetcode·矩阵
幼儿园园霸柒柒1 天前
第七章: 7.3求一个3*3的整型矩阵对角线元素之和
c语言·c++·算法·矩阵·c#·1024程序员节
星沁城1 天前
73. 矩阵置零
java·算法·矩阵
jndingxin1 天前
OpenCV视觉分析之目标跟踪(11)计算两个图像之间的最佳变换矩阵函数findTransformECC的使用
opencv·目标跟踪·矩阵
pen-ai2 天前
【机器学习】21. Transformer: 最通俗易懂讲解
人工智能·神经网络·机器学习·矩阵·数据挖掘
会写代码的饭桶2 天前
【C++刷题】力扣-#566-重塑矩阵
c++·leetcode·矩阵
君臣Andy2 天前
【矩阵的大小和方向的分解】
线性代数·矩阵
武子康2 天前
大数据-207 数据挖掘 机器学习理论 - 多重共线性 矩阵满秩 线性回归算法
大数据·人工智能·算法·决策树·机器学习·矩阵·数据挖掘
玛卡巴卡(努力学习版)2 天前
矩阵特殊打印方式
c++·算法·矩阵
herobrineAC3 天前
线代的几何意义(一)——向量,坐标,矩阵
线性代数·矩阵