Word2Vec浅谈

论文地址:Efficient Estimation of Word Representations in Vector Space

个人认为,word2vec主要解决的问题是one-hot中维度过高并且稀疏的问题。word2vec是Google团队在2013年发表的一篇paper,当时一经问世直接将NLP领域带到了一个新的高度,在2018年bert被提出之前,word2vec一直是NLP算法工程师追捧的预训练词向量模型。

Word2Vec是轻量级的神经网络,其模型仅仅包括输入层、隐藏层和输出层,模型框架根据输入输出的不同,主要包括CBOW和Skip-gram模型。CBOW是知道 w t − 2 w_{t-2} wt−2, w t − 1 w_{t-1} wt−1, w t + 1 w_{t+1} wt+1, w t + 2 w_{t+2} wt+2,预测 w t w_t wt.而Skip-gram是知道 w t w_t wt,预测 w t − 2 w_{t-2} wt−2, w t − 1 w_{t-1} wt−1, w t + 1 w_{t+1} wt+1, w t + 2 w_{t+2} wt+2

首先,输入层是一个one-hot向量,具体细节请看前面的博客。例如 w t − 2 = [ 0 , 0 , 1 , 0 , 0 , 0 ] w_{t-2}=[0,0,1,0,0,0] wt−2=[0,0,1,0,0,0] 经过一个矩阵 [ 0 1 1 1 1 0 3 5 6 1 1 0 1 0 1 ] \begin{bmatrix} 0&1&1\\ 1&1&0\\ 3&5&6\\ 1&1&0\\ 1&0&1\\ \end{bmatrix} 013111151010601 将高维度的one-hot向量映射为低维度的向量 [ 3 , 5 , 6 ] T [3,5,6]^T [3,5,6]T,再经过一个矩阵,把低维向量映射回高维,得到输出层 [ 1 1 1 1 1 3 1 0 1 1 2 5 6 1 1 ] \begin{bmatrix} 1&1&1&1&1\\ 3&1&0&1&1\\ 2&5&6&1&1\\ \end{bmatrix} 132115106111111 这样可以得到输出为 [ 30 , 38 , 39 , 14 , 14 ] T [30,38,39,14,14]^T [30,38,39,14,14]T这就是根据 w t − 2 w_{t-2} wt−2预测得到 w t w_t wt的结果,将 w t − 2 w_{t-2} wt−2扩展到 w t − 1 w_{t-1} wt−1, w t + 1 w_{t+1} wt+1, w t + 2 w_{t+2} wt+2就是多几个输入的one-hot向量的问题。同理Skip-gram也是一样。总的来说就是一个从高维映射到低维再映射回去的过程。

参考:

  1. 详解Word2Vec原理篇
  2. 深入浅出Word2Vec原理解析
相关推荐
HELLO程序员5 小时前
Claude Code 2.1 发布:2026 年 AI 智能体开发的范式革命
人工智能
DFCED5 小时前
OpenClaw部署实战:5分钟搭建你的专属AI数字员工(附避坑指南)
人工智能·大模型·agent·openclaw
Java新手村5 小时前
基于 Vue 3 + Spring Boot 3 的 AI 面试辅助系统:实时语音识别 + 大模型智能回答
vue.js·人工智能·spring boot
Junlan275 小时前
Cursor使用入门及连接服务器方法(更新中)
服务器·人工智能·笔记
robot_learner5 小时前
OpenClaw, 突然走红的智能体
人工智能
ujainu小5 小时前
CANN仓库内容深度解读:昇腾AI生态的基石与AIGC发展的引擎
人工智能·aigc
rcc86285 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠5 小时前
【无标题】
人工智能·深度学习·机器学习
callJJ6 小时前
Spring AI 文本聊天模型完全指南:ChatModel 与 ChatClient
java·大数据·人工智能·spring·spring ai·聊天模型
是店小二呀6 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer