鸿蒙4.0线程池实现分析

libuv 介绍

源码分析发现内部使用了 libuv,需要先简单了解下libuv的原理,和简单的使用方法

github.com/libuv/libuv

docs.libuv.org/en/v1.x/des...

Libuv是一个跨平台的的基于事件驱动的异步io库,最初是为Node.js编写的。但是他提供的功能不仅仅是io,包括进程、线程、信号、定时器、进程间通信等

线程间通信

Demo 实现

arduino 复制代码
#include <hilog/log.h>
#include <thread>
#include <unistd.h>
#include <uv.h>

uv_async_t async;
double percentage;

void print_progress(uv_async_t *handle) {
    double percentage = *((double *)handle->data);
    //    fprintf(stderr, "Downloaded %.2f%%\n", percentage);
    OH_LOG_Print(LOG_APP, LOG_WARN, 0xAAABB, "abtest", "<%{public}s %{public}f>", "print_progress", percentage);
}

void after(uv_work_t *req, int status) {
    OH_LOG_Print(LOG_APP, LOG_WARN, 0xAAABB, "abtest", "<%{public}s>", "Download complete");

    uv_close((uv_handle_t *)&async, NULL);
}

void fake_download(uv_work_t *req) {
    int size = *((int *)req->data);
    int downloaded = 0;
    while (downloaded < size) {
        percentage = downloaded * 100.0 / size;
        async.data = (void *)&percentage;
        uv_async_send(&async);
        sleep(1);
        downloaded += (200 + random()) % 1000; // can only download max 1000bytes/sec,
                                               // but at least a 200;
    }。 
},,

void test_threads(){
        uv_loop_t *loop = uv_default_loop();
        uv_work_t req;
        int size = 10240;
        req.data = (void *)&size;
        uv_async_init(loop, &async, print_progress);
        uv_queue_work(loop, &req, fake_download, after);
        uv_run(loop, UV_RUN_DEFAULT);
}
  • uv_default_loop

  • uv_run

    • 核心实现:epoll ,非 io 事件使用eventfd epoll_wait 阻塞避免了时间 循环 一直工作导致占用 CPU 的问题

    • 和android handler比较,核心实现是一致的。以下 Android实现方法 system/core/libutils/Looper.cpp

    scss 复制代码
        //wait
        int Looper::pollInner(int timeoutMillis) {
        ...
            int eventCount = epoll_wait(mEpollFd.get(), eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
            ...
        }
        //ctl
           int result = epoll_ctl(mEpollFd.get(), EPOLL_CTL_ADD, mWakeEventFd.get(), &wakeEvent);
        //wake
        void Looper::wake() {
            //
            ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd.get(), &inc, sizeof(uint64_t)));
        }
    • 下图显示了libuv事件循环的所有阶段:

  • uv_async_init

    • int uv_async_init(uv_loop_t* loop, uv_async_t* handle, uv_async_cb async_cb)
    • 和uv_async_send方法在线程通信中配对使用, handle和async_cb加入到loop的async_handles队列
    • int uv_async_send(uv_async_t* handle) 方法将handle的pending设置为1,并向loop->async_wfd写入事件唤醒主线程。主线程检查handle的pending为1后执行async_cb方法。
  • uv_queue_work

libuv中的threadpool

UV_EXTERN int uv_queue_work(uv_loop_t* loop, uv_work_t* req, uv_work_cb work_cb, uv_after_work_cb after_work_cb)

第一次提交会创建一个线程池。 uv_thread_create中用pthread创建子线程,子线程执行时用。 uv_cond_signal(&cond)阻塞线程 ,主线程通过uv__work_submit提交work到队列,方法中会用uv_cond_signal(&cond);唤醒子线程,子线程从队列中取出work执行work_cb ,执行完后通过uv_async_send方法通知到主线程,主线程执行after_work_cb

源码分析

taskpool模块注册

javascript 复制代码
import taskpool from '@ohos.taskpool';

/commonlibrary/ets_utils/js_concurrent_module/taskpool/native_module_taskpool.cpp

ini 复制代码
static napi_module g_taskPoolModule = {
    .nm_version = 1,
    .nm_flags = 0,
    .nm_filename = nullptr,
    .nm_register_func = Commonlibrary::Concurrent::TaskPoolModule::TaskPool::InitTaskPool,
    .nm_modname = "taskpool",
    .nm_priv = reinterpret_cast<void*>(0),
    .reserved = { 0 },
};

/*
 * module register
 */
extern "C" __attribute__((constructor)) void TaskPoolRegister()
{
    napi_module_register(&g_taskPoolModule);
}

js导出类方法创建

scss 复制代码
napi_value TaskPool::InitTaskPool(napi_env env, napi_value exports){
 HILOG_INFO("taskpool:: Import taskpool");
    HITRACE_HELPER_METER_NAME(__PRETTY_FUNCTION__);
    napi_value taskClass = nullptr;
    napi_define_class(env, "Task", NAPI_AUTO_LENGTH, Task::TaskConstructor, nullptr, 0, nullptr, &taskClass);
    napi_value taskGroupClass = nullptr;
    napi_define_class(env, "TaskGroup", NAPI_AUTO_LENGTH, TaskGroup::TaskGroupConstructor, nullptr, 0, nullptr,
                      &taskGroupClass);
    napi_value isCanceledFunc;
    napi_create_function(env, "isCanceled", NAPI_AUTO_LENGTH, TaskManager::IsCanceled, NULL, &isCanceledFunc);
    napi_set_named_property(env, taskClass, "isCanceled", isCanceledFunc);

    // define priority
    napi_value priorityObj = NapiHelper::CreateObject(env);
    napi_value highPriority = NapiHelper::CreateUint32(env, Priority::HIGH);
    napi_value mediumPriority = NapiHelper::CreateUint32(env, Priority::MEDIUM);
    napi_value lowPriority = NapiHelper::CreateUint32(env, Priority::LOW);
    napi_property_descriptor exportPriority[] = {
        DECLARE_NAPI_PROPERTY("HIGH", highPriority),
        DECLARE_NAPI_PROPERTY("MEDIUM", mediumPriority),
        DECLARE_NAPI_PROPERTY("LOW", lowPriority),
    };
    napi_define_properties(env, priorityObj, sizeof(exportPriority) / sizeof(exportPriority[0]), exportPriority);

    napi_property_descriptor properties[] = {
        DECLARE_NAPI_PROPERTY("Task", taskClass),
        DECLARE_NAPI_PROPERTY("TaskGroup", taskGroupClass),
        DECLARE_NAPI_PROPERTY("Priority", priorityObj),
        DECLARE_NAPI_FUNCTION("execute", Execute),
        DECLARE_NAPI_FUNCTION("cancel", Cancel),
        DECLARE_NAPI_FUNCTION("getTaskPoolInfo", GetTaskPoolInfo),
    };
    napi_define_properties(env, exports, sizeof(properties) / sizeof(properties[0]), properties);

    TaskManager::GetInstance().InitTaskManager(env);
    return exports;
}

线程池初始化

  • 为线程池添加一个预留线程,通过libuv库的uv_thread_create方法创建一个线程。
ini 复制代码
void TaskManager::CreateWorkers(napi_env env, uint32_t num)
{
    for (uint32_t i = 0; i < num; i++) {
        expandingCount_++;
        auto worker = Worker::WorkerConstructor(env);
        NotifyWorkerAdded(worker);
    }
}

Worker* Worker::WorkerConstructor(napi_env env)
{
    HITRACE_HELPER_METER_NAME("WorkerConstructor: [Add Thread]");
    Worker* worker = new Worker(env);
    worker->StartExecuteInThread();
    return worker;
}

void Worker::StartExecuteInThread()
{
    if (!runner_) {
        runner_ = std::make_unique<TaskRunner>(TaskStartCallback(ExecuteInThread, this));
    }
    if (runner_) {
        runner_->Execute(); // start a new thread
    } else {
        HILOG_ERROR("taskpool:: runner_ is nullptr");
    }
}

bool TaskRunner::Execute()
{
    taskInnerRunner_ = new TaskInnerRunner(this);
    return taskInnerRunner_->Start();
}

bool Thread::Start()
{
    int ret = uv_thread_create(&tid_, [](void* arg) {
#if defined IOS_PLATFORM || defined MAC_PLATFORM
        pthread_setname_np("TaskWorkThread");
#else
        pthread_setname_np(pthread_self(), "TaskWorkThread");
#endif
        Thread* thread = reinterpret_cast<Thread*>(arg);
        thread->Run();
    }, this);
    return ret != 0;
}
  • 开启预留线程的loop功能

上面线程开启后执行ExecuteInThread 方法。

  1. 标记worker env为taskpool Thread,与ark runtime交互,用于检测js中的异步方法和回调
  2. 注册几个uv_async_init用于接受其他线程事件, worker->RunLoop()利用uv_run开启loop

关注几个uv_async_init

uv_async_init(loop, worker->performTaskSignal_, reinterpret_cast<uv_async_cb>(Worker::PerformTask)) uv_async_init(loop, worker->clearWorkerSignal_, reinterpret_cast<uv_async_cb>(Worker::ReleaseWorkerHandles));

  1. work加入到idleWorkers_
arduino 复制代码
void TaskRunner::TaskInnerRunner::Run()
{
    if (runner_ != nullptr) {
        runner_->Run();
    }
}

TaskRunner::TaskInnerRunner::TaskInnerRunner(const TaskRunner* runner) : runner_(runner) {}

void TaskRunner::Run() const
{
    if (callback_.callback != nullptr) {
        callback_.callback(callback_.data);
    }
}
ini 复制代码
void Worker::ExecuteInThread(const void* data)
{
    HITRACE_HELPER_START_TRACE(__PRETTY_FUNCTION__);
    auto worker = reinterpret_cast<Worker*>(const_cast<void*>(data));
    {
        napi_create_runtime(worker->hostEnv_, &worker->workerEnv_);
        if (worker->workerEnv_ == nullptr) {
            HILOG_ERROR("taskpool:: workerEnv is nullptr");
            return;
        }
        auto workerEngine = reinterpret_cast<NativeEngine*>(worker->workerEnv_);
        // mark worker env is taskpoolThread
        workerEngine->MarkTaskPoolThread();
        workerEngine->InitTaskPoolThread(workerEngine, Worker::TaskResultCallback);
    }
    uv_loop_t* loop = worker->GetWorkerLoop();
    if (loop == nullptr) {
        HILOG_ERROR("taskpool:: loop is nullptr");
        return;
    }
    // save the worker tid
    worker->tid_ = GetThreadId();

    // Init worker task execute signal
    worker->performTaskSignal_ = new uv_async_t;
    worker->performTaskSignal_->data = worker;
    uv_async_init(loop, worker->performTaskSignal_, reinterpret_cast<uv_async_cb>(Worker::PerformTask));

    worker->clearWorkerSignal_ = new uv_async_t;
    worker->clearWorkerSignal_->data = worker;
    uv_async_init(loop, worker->clearWorkerSignal_, reinterpret_cast<uv_async_cb>(Worker::ReleaseWorkerHandles));

    HITRACE_HELPER_FINISH_TRACE;
#if !defined(WINDOWS_PLATFORM) && !defined(MAC_PLATFORM)
    // Init debugger task post signal
    worker->debuggerOnPostTaskSignal_ = new uv_async_t;
    worker->debuggerOnPostTaskSignal_->data = worker;
    uv_async_init(loop, worker->debuggerOnPostTaskSignal_, reinterpret_cast<uv_async_cb>(Worker::HandleDebuggerTask));
#endif
    if (worker->PrepareForWorkerInstance()) {
        // Call after uv_async_init
        worker->NotifyWorkerCreated();
        worker->RunLoop();
    } else {
        HILOG_ERROR("taskpool:: Worker PrepareForWorkerInstance fail");
    }
    TaskManager::GetInstance().RemoveWorker(worker);
    worker->ReleaseWorkerThreadContent();
    delete worker;
    worker = nullptr;
}
  • 同时创建一个定时器来调整线程数量
ini 复制代码
void TaskManager::RunTaskManager()
{
    loop_ = uv_default_loop();
    timer_ = new uv_timer_t;
    uv_timer_init(loop_, timer_);
    notifyRestartTimer_ = new uv_async_t;
    uv_timer_start(timer_, reinterpret_cast<uv_timer_cb>(TaskManager::TriggerLoadBalance), 0, 1000); // 1000: 1s
    uv_async_init(loop_, notifyRestartTimer_, reinterpret_cast<uv_async_cb>(TaskManager::RestartTimer));
#if defined IOS_PLATFORM || defined MAC_PLATFORM
    pthread_setname_np("TaskMgrThread");
#else
    pthread_setname_np(pthread_self(), "TaskMgrThread");
#endif
    uv_run(loop_, UV_RUN_DEFAULT);
    uv_loop_close(loop_);
}

创建任务

ini 复制代码
let task = new taskpool.Task(test);

主要用于 生成taskid 保存异步方法 和入参

scss 复制代码
napi_value Task::TaskConstructor(napi_env env, napi_callback_info cbinfo)
{
    // check argv count
    size_t argc = NapiHelper::GetCallbackInfoArgc(env, cbinfo);
    if (argc < 1) {
        ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "taskpool:: create task need more than one param");
        return nullptr;
    }

    // check 1st param is func
    napi_value* args = new napi_value[argc];
    ObjectScope<napi_value> scope(args, true);
    napi_value thisVar;
    napi_get_cb_info(env, cbinfo, &argc, args, &thisVar, nullptr);
    if (!NapiHelper::IsFunction(args[0])) {
        ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "taskpool:: the first param of task must be function");
        return nullptr;
    }
    CreateTaskByFunc(env, thisVar, args[0], args, argc);
    return thisVar;
}

void Task::CreateTaskByFunc(napi_env env, napi_value task, napi_value func, napi_value* args, size_t argc)
{
    napi_value argsArray;
    napi_create_array_with_length(env, argc - 1, &argsArray);
    for (size_t i = 0; i < argc - 1; i++) {
        napi_set_element(env, argsArray, i, args[i + 1]);
    }

    napi_value taskId = NapiHelper::CreateUint32(env, TaskManager::GetInstance().GenerateTaskId());

    napi_value setTransferListFunc;
    napi_create_function(env, SETTRANSFERLIST_STR, NAPI_AUTO_LENGTH, SetTransferList, NULL, &setTransferListFunc);

    napi_property_descriptor properties[] = {
        DECLARE_NAPI_PROPERTY(FUNCTION_STR, args[0]),
        DECLARE_NAPI_PROPERTY(ARGUMENTS_STR, argsArray),
        DECLARE_NAPI_PROPERTY(TASKID_STR, taskId),
        DECLARE_NAPI_FUNCTION(SETTRANSFERLIST_STR, SetTransferList),
    };
    napi_define_properties(env, task, sizeof(properties) / sizeof(properties[0]), properties);
}

任务提交

ini 复制代码
taskpool.execute(task);
  1. 通过入参是是否napi_object 确定上层调用方法。

  2. 这个例子是task是napi_object

    1. 生成ExecuteId和TaskInfo
    2. 创建Promise deferred报存在taskinfo中
  3. 提交执行taskInfo,通知执行NotifyExecuteTask();

ini 复制代码
napi_value TaskPool::Execute(napi_env env, napi_callback_info cbinfo)
{
    HITRACE_HELPER_METER_NAME(__PRETTY_FUNCTION__);
    // check the argc
    size_t argc = NapiHelper::GetCallbackInfoArgc(env, cbinfo);
    if (argc < 1) {
        ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "taskpool:: the number of params must be at least one");
        return nullptr;
    }

    // check the first param is object or func
    napi_value* args = new napi_value[argc];
    ObjectScope<napi_value> scope(args, true);
    napi_get_cb_info(env, cbinfo, &argc, args, nullptr, nullptr);
    napi_valuetype type;
    napi_typeof(env, args[0], &type);

    uint32_t priority = Priority::DEFAULT; // DEFAULT priority is MEDIUM
    if (type == napi_object) {
        // Get execution priority
        if (argc > 1) {
            if (!NapiHelper::IsNumber(args[1])) {
                ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "taskpool:: priority type is error");
                return nullptr;
            }
            priority = NapiHelper::GetUint32Value(env, args[1]);
            if (priority >= Priority::NUMBER) {
                ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "taskpool:: priority value is error");
                return nullptr;
            }
        }
        if (NapiHelper::HasNameProperty(env, args[0], GROUP_ID_STR)) {
            return ExecuteGroup(env, args[0], Priority(priority));
        }
        uint32_t executeId = TaskManager::GetInstance().GenerateExecuteId();
        TaskInfo* taskInfo = TaskManager::GetInstance().GenerateTaskInfoFromTask(env, args[0], executeId);
        if (taskInfo == nullptr) {
            HILOG_ERROR("taskpool::ExecuteTask taskInfo is nullptr");
            return nullptr;
        }
        napi_value promise = NapiHelper::CreatePromise(env, &taskInfo->deferred);
        TaskManager::GetInstance().StoreRunningInfo(taskInfo->taskId, executeId);
        ExecuteFunction(env, taskInfo, Priority(priority));
        return promise;
    }
    if (type != napi_function) {
        ErrorHelper::ThrowError(env, ErrorHelper::TYPE_ERROR, "taskpool:: first param must be object or function");
        return nullptr;
    }
    // Type is napi_function, execute from func directly
    napi_value argsArray;
    napi_create_array_with_length(env, argc - 1, &argsArray);
    for (size_t i = 0; i < argc - 1; i++) {
        napi_set_element(env, argsArray, i, args[i + 1]);
    }
    uint32_t executeId = TaskManager::GetInstance().GenerateExecuteId();
    // Set task id to 0 when execute from func directly
    TaskInfo* taskInfo = TaskManager::GetInstance().GenerateTaskInfo(env, args[0], argsArray, 0, executeId);
    if (taskInfo == nullptr) {
        HILOG_ERROR("taskpool::ExecuteFunction taskInfo is nullptr");
        return nullptr;
    }
    napi_value promise = NapiHelper::CreatePromise(env, &taskInfo->deferred);
    TaskManager::GetInstance().StoreRunningInfo(0, executeId);
    ExecuteFunction(env, taskInfo);
    return promise;
}
css 复制代码
void TaskPool::ExecuteFunction(napi_env env, TaskInfo* taskInfo, Priority priority)
{
    uint32_t executeId = taskInfo->executeId;
    taskInfo->priority = priority;
    // tag for trace parse: Task Allocation
    std::string strTrace = "Task Allocation: taskId : " + std::to_string(taskInfo->taskId)
        + ", executeId : " + std::to_string(executeId)
        + ", priority : " + std::to_string(priority)
        + ", executeState : " + std::to_string(ExecuteState::WAITING);
    HITRACE_HELPER_METER_NAME(strTrace);
    TaskManager::GetInstance().AddExecuteState(executeId);
    TaskManager::GetInstance().EnqueueExecuteId(executeId, priority);
    TaskManager::GetInstance().TryTriggerLoadBalance();
}
  1. 添加任务状态为waiting

  2. executeId提交到task_queue中 调用NotifyExecuteTask

arduino 复制代码
void TaskManager::AddExecuteState(uint32_t executeId)
{
    std::unique_lock<std::shared_mutex> lock(executeStatesMutex_);
    executeStates_.emplace(executeId, ExecuteState::WAITING);
}
scss 复制代码
void TaskManager::EnqueueExecuteId(uint32_t executeId, Priority priority)
{
    // once enqueued, reset the counter to make threads released at given time
    // if timer is stopped and then new tasks enqueue, restart it
    retryCount_ = 0;
    if (suspend_) {
        suspend_ = false;
        uv_async_send(notifyRestartTimer_);
    }

    {
        std::lock_guard<std::mutex> lock(taskQueuesMutex_);
        taskQueues_[priority]->EnqueueExecuteId(executeId);
    }
    NotifyExecuteTask();
}
scss 复制代码
void TaskManager::TriggerLoadBalance(const uv_timer_t* req)
{
    // Now, we will call triggerLoadBalance when enqueue or by monitor,
    // and taking the time used to create worker threads into consideration,
    // so we should ensure the the process is atomic.
    TaskManager& taskManager = TaskManager::GetInstance();

    HITRACE_HELPER_COUNT_TRACE("threadNum", static_cast<int64_t>(taskManager.GetThreadNum()));
    HITRACE_HELPER_COUNT_TRACE("runningThreadNum", static_cast<int64_t>(taskManager.GetRunningWorkers()));
    HITRACE_HELPER_COUNT_TRACE("idleThreadNum", static_cast<int64_t>(taskManager.GetIdleWorkers()));
    HITRACE_HELPER_COUNT_TRACE("timeoutThreadNum", static_cast<int64_t>(taskManager.GetTimeoutWorkers()));

    if (taskManager.expandingCount_ != 0) {
        return;
    }

    taskManager.CheckForBlockedWorkers();
    uint32_t targetNum = taskManager.ComputeSuitableThreadNum();
    if (targetNum != 0) {
        // We have tasks in the queue, and all workers may be running.
        // Therefore the target runnable threads should be the sum of runnig workers and the calculated result.
        targetNum = std::min(targetNum, taskManager.GetTaskNum());
        targetNum += taskManager.GetRunningWorkers();
    } else {
        // We have no task in the queue. Therefore we do not need extra threads.
        // But, tasks may still be executed in workers or microtask queue,
        // so we should return the num of running workers.
        targetNum = taskManager.GetRunningWorkers();
    }
    taskManager.CreateOrDeleteWorkers(targetNum);
}

任务处理

  1. uv_async_init performTaskSignal_ 处收到回调。
  2. 通过executeId获取到taskinfo
  3. 更新任务状态到RUNNING
  4. workerEngine->InitTaskPoolFunc。将taskinfo存储在函数中 这边会到ark runtime中检测函数的concurrent状态
  5. 调用task中的func函数。就是我们需要执行的逻辑
scss 复制代码
void Worker::NotifyExecuteTask()
{
    if (uv_is_active(reinterpret_cast<uv_handle_t*>(performTaskSignal_))) {
        uv_async_send(performTaskSignal_);
    }
}
ini 复制代码
void Worker::PerformTask(const uv_async_t* req)
{
    auto worker = static_cast<Worker*>(req->data);
    napi_env env = worker->workerEnv_;
    napi_status status = napi_ok;
    RunningScope runningScope(worker, status);
    NAPI_CALL_RETURN_VOID(env, status);
    auto executeIdAndPriority = TaskManager::GetInstance().DequeueExecuteId();
    if (executeIdAndPriority.first == 0) {
        worker->NotifyTaskFinished();
        return;
    }

    PriorityScope priorityScope(worker, executeIdAndPriority.second);
    TaskInfo* taskInfo = TaskManager::GetInstance().GetTaskInfo(executeIdAndPriority.first);
    if (taskInfo == nullptr) { // task may have been canceled
        worker->NotifyTaskFinished();
        HILOG_DEBUG("taskpool::PerformTask taskInfo is null");
        return;
    }
    {
        std::lock_guard<std::mutex> lock(worker->currentTaskIdMutex_);
        worker->currentTaskId_.emplace_back(taskInfo->taskId);
    }
    // tag for trace parse: Task Perform
    std::string strTrace = "Task Perform: taskId : " + std::to_string(taskInfo->taskId) + ", executeId : " +
                           std::to_string(taskInfo->executeId);
    HITRACE_HELPER_METER_NAME(strTrace);

    taskInfo->worker = worker;
    TaskManager::GetInstance().UpdateExecuteState(taskInfo->executeId, ExecuteState::RUNNING);
    napi_value func;
    status = napi_deserialize(env, taskInfo->serializationFunction, &func);
    if (status != napi_ok || func == nullptr) {
        HILOG_ERROR("taskpool:: PerformTask deserialize function fail");
        napi_value err = ErrorHelper::NewError(env, ErrorHelper::ERR_WORKER_SERIALIZATION,
                                               "taskpool: failed to deserialize function.");
        taskInfo->success = false;
        NotifyTaskResult(env, taskInfo, err);
        return;
    }
    napi_value args;
    status = napi_deserialize(env, taskInfo->serializationArguments, &args);
    if (status != napi_ok || args == nullptr) {
        HILOG_ERROR("taskpool:: PerformTask deserialize arguments fail");
        napi_value err = ErrorHelper::NewError(env, ErrorHelper::ERR_WORKER_SERIALIZATION,
                                               "taskpool: failed to deserialize arguments.");
        taskInfo->success = false;
        NotifyTaskResult(env, taskInfo, err);
        return;
    }

    auto funcVal = reinterpret_cast<NativeValue*>(func);
    auto workerEngine = reinterpret_cast<NativeEngine*>(env);
    // Store taskinfo in function
    bool success = workerEngine->InitTaskPoolFunc(workerEngine, funcVal, taskInfo);
    napi_value exception;
    napi_get_and_clear_last_exception(env, &exception);
    if (exception != nullptr) {
        HILOG_ERROR("taskpool:: InitTaskPoolFunc occur exception");
        taskInfo->success = false;
        napi_value errorEvent = ErrorHelper::TranslateErrorEvent(env, exception);
        NotifyTaskResult(env, taskInfo, errorEvent);
        return;
    }
    if (!success) {
        HILOG_ERROR("taskpool:: InitTaskPoolFunc fail");
        napi_value err = ErrorHelper::NewError(env, ErrorHelper::TYPE_ERROR,
                                               "taskpool: function may not be concurrent.");
        taskInfo->success = false;
        NotifyTaskResult(env, taskInfo, err);
        return;
    }

    uint32_t argsNum = NapiHelper::GetArrayLength(env, args);
    napi_value argsArray[argsNum];
    napi_value val;
    for (size_t i = 0; i < argsNum; i++) {
        napi_get_element(env, args, i, &val);
        argsArray[i] = val;
    }

    napi_value result;
    napi_value undefined = NapiHelper::GetUndefinedValue(env);
    napi_call_function(env, undefined, func, argsNum, argsArray, &result);
    {
        std::lock_guard<std::mutex> lock(worker->stateMutex_);
        if (LIKELY(worker->state_ == WorkerState::RUNNING)) {
            uint64_t duration = ConcurrentHelper::GetMilliseconds() - worker->startTime_;
            TaskManager::GetInstance().UpdateExecutedInfo(duration);
        }
    }
    napi_get_and_clear_last_exception(env, &exception);
    if (exception != nullptr) {
        HILOG_ERROR("taskpool::PerformTask occur exception");
        taskInfo->success = false;
        napi_value errorEvent = ErrorHelper::TranslateErrorEvent(env, exception);
        NotifyTaskResult(env, taskInfo, errorEvent);
    }
}

任务回调

  1. 移除executeId 执行信息
  2. uv_async_init onResultSignal处 收到回调TaskPool::HandleTaskResult
  3. js层的promise收到回调
ini 复制代码
void Worker::TaskResultCallback(NativeEngine* engine, NativeValue* result, bool success, void* data)
{
    HITRACE_HELPER_METER_NAME(__PRETTY_FUNCTION__);
    if (engine == nullptr) {
        HILOG_FATAL("taskpool::TaskResultCallback engine is null");
        return;
    }
    if (data == nullptr) {
        HILOG_FATAL("taskpool:: taskInfo is nullptr");
        return;
    }
    TaskInfo* taskInfo = static_cast<TaskInfo*>(data);
    auto env = reinterpret_cast<napi_env>(engine);
    taskInfo->success = success;
    NotifyTaskResult(env, taskInfo, reinterpret_cast<napi_value>(result));
}
ini 复制代码
void Worker::NotifyTaskResult(napi_env env, TaskInfo* taskInfo, napi_value result)
{
    HITRACE_HELPER_METER_NAME(__PRETTY_FUNCTION__);
    napi_value undefined = NapiHelper::GetUndefinedValue(env);
    napi_value resultData;
    napi_status status = napi_serialize(env, result, undefined, &resultData);
    if ((status != napi_ok || resultData == nullptr) && taskInfo->success) {
        taskInfo->success = false;
        napi_value err = ErrorHelper::NewError(env, ErrorHelper::ERR_WORKER_SERIALIZATION,
                                               "taskpool: failed to serialize result.");
        NotifyTaskResult(env, taskInfo, err);
        return;
    }
    taskInfo->result = resultData;

    TaskManager::GetInstance().RemoveExecuteState(taskInfo->executeId);
    if (taskInfo->groupExecuteId == 0) {
        TaskManager::GetInstance().PopRunningInfo(taskInfo->taskId, taskInfo->executeId);
    }
    TaskManager::GetInstance().PopTaskInfo(taskInfo->executeId);
    Worker* worker = reinterpret_cast<Worker*>(taskInfo->worker);
    {
        std::lock_guard<std::mutex> lock(worker->currentTaskIdMutex_);
        worker->currentTaskId_.erase(std::find(worker->currentTaskId_.begin(),
                                     worker->currentTaskId_.end(), taskInfo->taskId));
    }
    uv_async_send(taskInfo->onResultSignal);
    worker->NotifyTaskFinished();
}
rust 复制代码
void TaskPool::HandleTaskResult(const uv_async_t* req)
{
    HITRACE_HELPER_METER_NAME(__PRETTY_FUNCTION__);
    auto taskInfo = static_cast<TaskInfo*>(req->data);
    if (taskInfo == nullptr) {
        HILOG_FATAL("taskpool::HandleTaskResult taskInfo is null");
        return;
    }
    napi_handle_scope scope = nullptr;
    NAPI_CALL_RETURN_VOID(taskInfo->env, napi_open_handle_scope(taskInfo->env, &scope));
    napi_value taskData = nullptr;
    napi_status status = napi_deserialize(taskInfo->env, taskInfo->result, &taskData);

    // tag for trace parse: Task PerformTask End
    std::string strTrace = "Task PerformTask End: taskId : " + std::to_string(taskInfo->taskId);
    strTrace += ", executeId : " + std::to_string(taskInfo->executeId);
    if (taskInfo->isCanceled) {
        strTrace += ", performResult : IsCanceled";
    } else if (status != napi_ok) {
        strTrace += ", performResult : DeserializeFailed";
    } else if (taskInfo->success) {
        strTrace += ", performResult : Successful";
    } else {
        strTrace += ", performResult : Unsuccessful";
    }
    HITRACE_HELPER_METER_NAME(strTrace);

    bool success = status == napi_ok && !taskInfo->isCanceled && taskInfo->success;
    if (taskData == nullptr) {
        napi_get_undefined(taskInfo->env, &taskData);
    }
    if (taskInfo->groupExecuteId == 0) {
        if (success) {
            napi_resolve_deferred(taskInfo->env, taskInfo->deferred, taskData);
        } else {
            napi_reject_deferred(taskInfo->env, taskInfo->deferred, taskData);
        }
    } else {
        UpdateGroupInfoByResult(taskInfo->env, taskInfo, taskData, success);
    }
    NAPI_CALL_RETURN_VOID(taskInfo->env, napi_close_handle_scope(taskInfo->env, scope));
    TaskManager::GetInstance().ReleaseTaskContent(taskInfo);
}

线程池线程数保持逻辑

  • TriggerLoadBalance触发时机

    • 任务提交时
    • 创建了定时器 每个1秒调用
  • CheckForBlockedWorkers 当任务来不及执行 nextCheckTime_ < now 检测超时work并移除

  • CreateOrDeleteWorkers

    • 当没有任务时暂停定时器
    • 满足workerCount < maxThreads && workerCount < targetNum 优先创建线程。
    • 空闲线程过多时清理线程
scss 复制代码
void TaskManager::TriggerLoadBalance(const uv_timer_t* req)
{
    // Now, we will call triggerLoadBalance when enqueue or by monitor,
    // and taking the time used to create worker threads into consideration,
    // so we should ensure the the process is atomic.
    TaskManager& taskManager = TaskManager::GetInstance();

    HITRACE_HELPER_COUNT_TRACE("threadNum", static_cast<int64_t>(taskManager.GetThreadNum()));
    HITRACE_HELPER_COUNT_TRACE("runningThreadNum", static_cast<int64_t>(taskManager.GetRunningWorkers()));
    HITRACE_HELPER_COUNT_TRACE("idleThreadNum", static_cast<int64_t>(taskManager.GetIdleWorkers()));
    HITRACE_HELPER_COUNT_TRACE("timeoutThreadNum", static_cast<int64_t>(taskManager.GetTimeoutWorkers()));

    if (taskManager.expandingCount_ != 0) {
        return;
    }

    taskManager.CheckForBlockedWorkers();
    uint32_t targetNum = taskManager.ComputeSuitableThreadNum();
    if (targetNum != 0) {
        // We have tasks in the queue, and all workers may be running.
        // Therefore the target runnable threads should be the sum of runnig workers and the calculated result.
        targetNum = std::min(targetNum, taskManager.GetTaskNum());
        targetNum += taskManager.GetRunningWorkers();
    } else {
        // We have no task in the queue. Therefore we do not need extra threads.
        // But, tasks may still be executed in workers or microtask queue,
        // so we should return the num of running workers.
        targetNum = taskManager.GetRunningWorkers();
    }
    taskManager.CreateOrDeleteWorkers(targetNum);
}
scss 复制代码
void TaskManager::CheckForBlockedWorkers()
{
    // monitor the running state
    uint64_t now = ConcurrentHelper::GetMilliseconds();
    if (UNLIKELY(nextCheckTime_ < now)) {
        // the threshold will be dynamically modified to provide more flexibility in detecting exceptions
        // if the thread num has reached the limit and the idle worker is not available, a short time will be used,
        // else we will choose the longer one
        std::lock_guard<std::recursive_mutex> lock(workersMutex_);
        bool state = GetThreadNum() == ConcurrentHelper::GetActiveCpus() - 1 && GetIdleWorkers() == 0;
        uint64_t threshold = state ? MIN_TIMEOUT_TIME : MAX_TIMEOUT_TIME;
        for (auto iter = workers_.begin(); iter != workers_.end();) {
            auto worker = *iter;
            std::lock_guard<std::mutex> stateLock(worker->stateMutex_);
            // if the worker thread is idle, just skip it
            if (worker->state_ == WorkerState::IDLE) {
                iter++;
                continue;
            }

            if (now - worker->startTime_ >= threshold) {
                HILOG_DEBUG("taskpool:: The worker is marked for timeout.");
                worker->state_ = WorkerState::BLOCKED;
                timeoutWorkers_.insert(worker);
                idleWorkers_.erase(worker);
                workers_.erase(iter++);
            } else {
                iter++;
            }
        }
        nextCheckTime_ = now + CHECK_INTERVAL;
    }
}
ini 复制代码
void TaskManager::CreateOrDeleteWorkers(uint32_t targetNum)
{
    // uv_timer_start should not run on the background frequently when there is no task
    if (targetNum == 0 && retryCount_ >= MAX_RETRY_COUNT) {
        uv_timer_stop(timer_);
        suspend_ = true;
        return;
    } else if (GetTimeoutWorkers() == 0 && targetNum == 0) {
        retryCount_++;
    } else {
        retryCount_ = 0;
    }

    uint32_t workerCount = GetThreadNum();
    const uint32_t maxThreads = std::max(ConcurrentHelper::GetActiveCpus() - 1, DEFAULT_THREADS);
    targetNum |= 1;
    if (workerCount < maxThreads && workerCount < targetNum) {
        uint32_t step = std::min(maxThreads, targetNum) - workerCount;
        CreateWorkers(hostEnv_, step);
    } else if (workerCount > MIN_THREADS && workerCount > targetNum) {
        std::lock_guard<std::recursive_mutex> lock(workersMutex_);
        uint32_t maxNum = std::max(MIN_THREADS, targetNum);
        uint32_t step = std::min(workerCount - maxNum, STEP_SIZE);
        for (uint32_t i = 0; i < step; i++) {
            auto iter = std::find_if(idleWorkers_.begin(), idleWorkers_.end(), [this](Worker *worker) {
                auto idleTime = ConcurrentHelper::GetMilliseconds() - worker->idlePoint_;
                return idleTime > MAX_IDLE_TIME && worker->runningCount_ == 0 &&
                    !Timer::HasTimer(worker->workerEnv_) && !HasTaskEnvInfo(worker->workerEnv_);
            });
            if (iter != idleWorkers_.end()) {
                workers_.erase(*iter);
                uv_async_send((*iter)->clearWorkerSignal_);
                idleWorkers_.erase(iter);
            }
        }
    }
    if (UNLIKELY(!timeoutWorkers_.empty())) {
        for (auto iter = timeoutWorkers_.begin(); iter != timeoutWorkers_.end();) {
            auto worker = *iter;
            if (worker->runningCount_ == 0 && worker->state_ == WorkerState::BLOCKED &&
                !Timer::HasTimer(worker->workerEnv_) && !HasTaskEnvInfo(worker->workerEnv_)) {
                uv_async_send(worker->clearWorkerSignal_);
                timeoutWorkers_.erase(iter++);
            } else {
                iter++;
            }
        }
    }
}
arduino 复制代码
void Worker::ReleaseWorkerHandles(const uv_async_t* req)
{
    HITRACE_HELPER_METER_NAME("ReleaseWorkerHandles: [Release Thread]");
    auto worker = static_cast<Worker*>(req->data);
    // when there is no active handle, worker loop will stop automatically.
    uv_close(reinterpret_cast<uv_handle_t*>(worker->performTaskSignal_), [](uv_handle_t* handle) {
        if (handle != nullptr) {
            delete reinterpret_cast<uv_async_t*>(handle);
            handle = nullptr;
        }
    });

#if !defined(WINDOWS_PLATFORM) && !defined(MAC_PLATFORM)
    uv_close(reinterpret_cast<uv_handle_t*>(worker->debuggerOnPostTaskSignal_), [](uv_handle_t* handle) {
        if (handle != nullptr) {
            delete reinterpret_cast<uv_async_t*>(handle);
            handle = nullptr;
        }
    });
#endif

    uv_close(reinterpret_cast<uv_handle_t*>(worker->clearWorkerSignal_), [](uv_handle_t* handle) {
        if (handle != nullptr) {
            delete reinterpret_cast<uv_async_t*>(handle);
            handle = nullptr;
        }
    });

    uv_loop_t* loop = worker->GetWorkerLoop();
    if (loop != nullptr) {
        uv_stop(loop);
    }
}

总结

鸿蒙中的taskpool底层利用libuv进行线程创建和线程通信。 不过没有直接使用taskpool的线程池,而是自己维护了一个可伸缩的线程池,并维护了任务状态。 除了通用的线程池能力,这里的taskpool封装了与上层js通信功能 涉及到与ark runtime thread打交道。ark runtime中的Thread 这次并没有去仔细探究。

相关推荐
吕彬-前端40 分钟前
使用vite+react+ts+Ant Design开发后台管理项目(五)
前端·javascript·react.js
学前端的小朱43 分钟前
Redux的简介及其在React中的应用
前端·javascript·react.js·redux·store
guai_guai_guai1 小时前
uniapp
前端·javascript·vue.js·uni-app
无极程序员1 小时前
PHP常量
android·ide·android studio
bysking2 小时前
【前端-组件】定义行分组的表格表单实现-bysking
前端·react.js
王哲晓2 小时前
第三十章 章节练习商品列表组件封装
前端·javascript·vue.js
萌面小侠Plus2 小时前
Android笔记(三十三):封装设备性能级别判断工具——低端机还是高端机
android·性能优化·kotlin·工具类·低端机
慢慢成长的码农2 小时前
Android Profiler 内存分析
android
大风起兮云飞扬丶2 小时前
Android——多线程、线程通信、handler机制
android
fg_4112 小时前
无网络安装ionic和运行
前端·npm