PyTorch - 高效快速配置 Conda + PyTorch 环境 (解决 segment fault )

欢迎关注我的CSDN:https://spike.blog.csdn.net/

本文地址:https://spike.blog.csdn.net/article/details/134463035

在配置算法项目时,因网络下载速度的原因,导致默认的 conda 与 pytorch 包安装缓慢,需要配置新的 conda 与 pip 源,以及下载安装 pytorch 环境。

1. 配置 conda 与 pip 源

配置 conda 清华源,vim ~/.condarc 添加:

bash 复制代码
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
channel_priority: disabled
allow_conda_downgrades: true

配置 pip 阿里云源,先删除其他 pip 配置,再配置新的 pip 源,即:

bash 复制代码
rm /opt/conda/pip.conf
rm /root/.config/pip/pip.conf
vim ~/.pip/pip.conf

配置 pip 源包括 阿里云(aliyun) 与 Nvidia,如下:

复制代码
[global]
no-cache-dir = true
index-url = http://mirrors.aliyun.com/pypi/simple/
extra-index-url = https://pypi.ngc.nvidia.com
trusted-host = mirrors.aliyun.com pypi.ngc.nvidia.com

2. PyTorch

安装 conda 环境,初始化 conda和更新 conda,再创建特定的 conda 环境,即:

bash 复制代码
conda init bash
source ~/.bashrc
conda update -n base -c conda-forge conda
conda env list
conda create -y -n [your name] python=3.9

需要注意,尽量指定 python 版本。

PyTorch 安装官网:https://pytorch.org/get-started/locally/,之前版本的路径:https://pytorch.org/get-started/previous-versions/

主要包括 2 个版本:最新的 2.+,之前的1.31+版本。根据网络条件,选择不同的安装方式,需要注意的是:

可以根据具体的安装命令选择下载的包,例如:

bash 复制代码
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117

需要注意:

  1. 选择正确的 cuda 版本,如 cu117。
  2. 选择正确的 python 版本,这个与创建 conda 环境相关,也可以进入 python 命令查看。
  3. 选择正确的环境,例如 linux_x86_64,是一般服务器的环境。

例如下载地址 https://download.pytorch.org/whl/,则需要下载的包:

bash 复制代码
pip install torch-1.13.1+cu117-cp39-cp39-linux_x86_64.whl
pip install torchvision-0.14.1+cu117-cp39-cp39-linux_x86_64.whl
pip install torchaudio-0.13.1+cu117-cp39-cp39-linux_x86_64.whl

可以上传至百度网盘,使用 bypy 包下载到服务器,使用 pip 进行安装,注意安装顺序是torch、torchvision、torchaudio,其他包默认安装,即可。

需要注意的是,如果遇到 segment fault ,参考 蛋白质结构预测 ESMFold 算法的工程配置

bash 复制代码
import torch
segment fault(core dumped) # 报错

则使用 unset LD_LIBRARY_PATH,即可,并且在文件 .bashrc.profile/etc/profile中查看,是否清除。

bash 复制代码
cat ~/.bashrc | grep LD_LIBRARY_PATH
cat ~/.profile | grep LD_LIBRARY_PATH
cat /etc/profile | grep LD_LIBRARY_PATH

PyTorch 的简易测试命令:

bash 复制代码
python

import torch
print(torch.__version__)  # 1.13.1
print(torch.cuda.is_available())  # True
exit()
相关推荐
大模型最新论文速读8 分钟前
模拟注意力:少量参数放大 Attention 表征能力
人工智能·深度学习·机器学习·语言模型·自然语言处理
lishaoan7738 分钟前
用TensorFlow进行逻辑回归(二)
人工智能·tensorflow·逻辑回归
慌ZHANG1 小时前
智慧气象新范式:人工智能如何重构城市级气象服务生态?
人工智能
Eumenidus1 小时前
使用ESM3蛋白质语言模型进行快速大规模结构预测
人工智能·语言模型·自然语言处理
熊猫钓鱼>_>1 小时前
FastGPT革命:下一代语言模型的极速进化
人工智能·语言模型·自然语言处理
吕永强1 小时前
电网的智能觉醒——人工智能重构能源生态的技术革命与公平悖论
人工智能·科普
极限实验室1 小时前
喜报 - 极限科技荣获 2025 上海开源创新菁英荟「开源创新新星企业」奖
人工智能·开源
在美的苦命程序员1 小时前
芯片之后,AI之争的下一个战场是能源?
人工智能
霖002 小时前
FPGA通信设计十问
运维·人工智能·经验分享·vscode·fpga开发·编辑器
天上游戏地下人间2 小时前
基于Opencv的缺陷检测实战
图像处理·人工智能·计算机视觉