Bert学习笔记(简单入门版)

目 录

一、基础架构

二、输入部分

三、预训练:MLM+NSP

[3.1 MLM:掩码语言模型](#3.1 MLM:掩码语言模型)

[3.1.1 mask模型缺点](#3.1.1 mask模型缺点)

[3.1.2 mask的概率问题](#3.1.2 mask的概率问题)

[3.1.3 mask代码实践](#3.1.3 mask代码实践)

[3.2 NSP](#3.2 NSP)

四、如何微调Bert

五、如何提升BERT下游任务表现

[5.1 一般做法](#5.1 一般做法)

[5.2 如何在相同领域数据中进行further pre-training](#5.2 如何在相同领域数据中进行further pre-training)

[5.3 参数设置Trick](#5.3 参数设置Trick)

六、如何在脱敏数据中使用Bert等预训练模型


一、基础架构

基础架构为Transformer的Encoder:

具体解释可参考简单易懂的Transformer学习笔记_十七季的博客-CSDN博客

Base bert -12层Encoder堆叠。

其中位置编码部分与Trm的positional encoding不同,具体在下面进行解释。

二、输入部分

CLS向量不能代表整个句子的语义信息

区分句子:上图中第一个句子E_A=0, 第二个句子E_B=1

位置信息:TRM正余弦;Bert随机初始化,模型自学习

三、预训练:MLM+NSP

3.1 MLM:掩码语言模型

没有标签,无监督。

AR:自回归模型,只能考虑单侧信息;GPT

AE:自编码模型,从损坏的输入数据中预测重建原始数据,可以使用上下文信息;Bert

Eg:

3.1.1 mask模型缺点

认为两个mask之间是独立的(但实际未必独立)

3.1.2 mask的概率问题

3.1.3 mask代码实践

3.2 NSP

NSP样本如下:

  1. 从训练语料库中取出两个连续的段落作为正样本

  2. 从不同的文档中随机创建一对段落作为负样本

缺点:

主题预测(是否属于同一个文档)和连贯性预测合并为一个单项任务

四、如何微调Bert

对输出Softmax

五、如何提升BERT下游任务表现

5.1 一般做法

1.获取谷歌中文Bert

2.基于任务数据进行微调

以微博文本情感分析为例:

  1. 在大量通用语料上训练一个LM(Pretrain);------中文谷歌BERT

  2. 在相同领域上继续训练LM(Domain transfer);------在大量微博文本上继续训练这个BERT

  3. 在任务相关的小数据上继续训训练LM(Task transfer); ------在微博情感文本上(有的文本不属于情感分析的范畴)

  4. 在任务相关数据上做具体任务(Fine-tune)。-

先Domain transfer再进行Task transfer最后Fine-tune性能是最好的

5.2 如何在相同领域数据中进行further pre-training

  1. 动态mask: 每次epoch去训练的时候mask,而不是一直使用同一个。

  2. n-gram mask: 比如ERNIE和SpanBerti都是类似于做了实体词的mask

5.3 参数设置Trick

Batch size :16,32------影响不太大
earning rate(Adam) :------尽可能小一点避免灾难性遗忘
Number of epochs :3,4
Weighted decay 修改后的adam ,使用warmup, 搭配线性衰减

数据增强/自蒸馏/外部知识的融入

六、如何在脱敏数据中使用Bert等预训练模型

对于脱敏语料使用BERT,一般可以分为两种:

  1. 直接从零开始基于语料训练一个新的BERT出来使用;

  2. 按照词频,把脱敏数字对照到中文或者其他语言【假如我们使用中文】,使用 中文BERT做初始化,然后基于新的中文语料训练BERT。

参考资料
BERT从零详细解读,看不懂来打我_哔哩哔哩_bilibili

相关推荐
飞哥数智坊6 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三6 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯7 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet9 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算10 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心10 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar11 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai11 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI12 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear13 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp