图像滤波处理

滤波处理是图像处理中常用的技术之一,用于去除图像中的噪声、平滑图像、边缘检测等。以下是几种常见的滤波处理方法:

1. 均值滤波 (Mean Filtering)

原理:

均值滤波使用一个固定大小的滤波器,在图像上滑动并取周围像素的平均值来替代中心像素值。这有助于减少图像中的高频噪声。

公式:

对于图像上的一个区域,以 I I I 表示原始图像, I smooth I_{\text{smooth}} Ismooth表示滤波后的图像,滤波器大小为 n × n n \times n n×n:
I smooth ( x , y ) = 1 n 2 ∑ i = 0 n − 1 ∑ j = 0 n − 1 I ( x + i , y + j ) I_{\text{smooth}}(x, y) = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} I(x+i, y+j) Ismooth(x,y)=n21i=0∑n−1j=0∑n−1I(x+i,y+j)

作用和适用场景:

适用于去除轻度噪声,如盐和胡椒噪声,但可能会导致图像细节丢失。

代码:
python 复制代码
import cv2

# 读取图像
img = cv2.imread('input_image.jpg')

# 应用均值滤波
filtered_img = cv2.blur(img, (3, 3))  # 参数 (3, 3) 表示滤波器大小

# 显示原始图像和滤波后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Mean Filtered Image', filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2. 高斯滤波 (Gaussian Filtering)

原理:

高斯滤波与均值滤波类似,但是采用了加权平均值,周围像素对中心像素的影响根据距离中心像素的位置以高斯分布加权。这种滤波器更多地保留了图像的细节。

公式:

I smooth ( x , y ) = 1 ∑ i = 0 n − 1 ∑ j = 0 n − 1 h ( i , j ) ∑ i = 0 n − 1 ∑ j = 0 n − 1 I ( x + i , y + j ) ⋅ h ( i , j ) I_{\text{smooth}}(x, y) = \frac{1}{\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} h(i, j)} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} I(x+i, y+j) \cdot h(i, j) Ismooth(x,y)=∑i=0n−1∑j=0n−1h(i,j)1i=0∑n−1j=0∑n−1I(x+i,y+j)⋅h(i,j)

其中, h ( i , j ) h(i, j) h(i,j) 是高斯核函数的值。

作用和适用场景:

适用于去除噪声并保留图像细节,常用于图像平滑和预处理。

代码:
python 复制代码
import cv2

# 读取图像
img = cv2.imread('input_image.jpg')

# 应用高斯滤波
filtered_img = cv2.GaussianBlur(img, (5, 5), 0)  # 参数 (5, 5) 表示滤波器大小,0 表示标准差

# 显示原始图像和滤波后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Gaussian Filtered Image', filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

3. 中值滤波 (Median Filtering)

原理:

中值滤波采用一个固定大小的滤波器,在图像上滑动并取周围像素的中值来替代中心像素值。对于去除椒盐噪声效果非常好。

作用和适用场景:

适用于去除椒盐噪声或脉冲噪声,能够有效保留图像细节。

代码:
python 复制代码
import cv2

# 读取图像
img = cv2.imread('input_image.jpg')

# 应用中值滤波
filtered_img = cv2.medianBlur(img, 5)  # 参数 5 表示滤波器大小

# 显示原始图像和滤波后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Median Filtered Image', filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
qianbo_insist11 分钟前
opencv技巧:投影变换代替旋转
opencv·计算机视觉
weixin_446934031 小时前
统计学中“in sample test”与“out of sample”有何区别?
人工智能·python·深度学习·机器学习·计算机视觉
weixin_462446231 小时前
使用 Python 测试 Mermaid 与 Graphviz 图表生成(支持中文)
python·mermaid·graphviz
JOBkiller1231 小时前
钢绞线缺陷检测与识别_Cascade-Mask-RCNN_RegNetX模型训练与应用实战
python
nvd111 小时前
深入 ReAct Agent 的灵魂拷问:从幻觉到精准执行的调试实录
python·langchain
Ulyanov1 小时前
战场地形生成与多源数据集成
开发语言·python·算法·tkinter·pyside·pyvista·gui开发
love530love1 小时前
告别环境崩溃:ONNX 与 Protobuf 版本兼容性指南
人工智能·windows·python·onnx·stablediffusion·comfyui·protobuf
ID_180079054732 小时前
日本乐天商品详情API接口的请求构造与参数说明
开发语言·python·pandas
多米Domi0112 小时前
0x3f 第35天 电脑硬盘坏了 +二叉树直径,将有序数组转换为二叉搜索树
java·数据结构·python·算法·leetcode·链表
UR的出不克3 小时前
使用 Python 爬取 Bilibili 弹幕数据并导出 Excel
java·python·excel