图像滤波处理

滤波处理是图像处理中常用的技术之一,用于去除图像中的噪声、平滑图像、边缘检测等。以下是几种常见的滤波处理方法:

1. 均值滤波 (Mean Filtering)

原理:

均值滤波使用一个固定大小的滤波器,在图像上滑动并取周围像素的平均值来替代中心像素值。这有助于减少图像中的高频噪声。

公式:

对于图像上的一个区域,以 I I I 表示原始图像, I smooth I_{\text{smooth}} Ismooth表示滤波后的图像,滤波器大小为 n × n n \times n n×n:
I smooth ( x , y ) = 1 n 2 ∑ i = 0 n − 1 ∑ j = 0 n − 1 I ( x + i , y + j ) I_{\text{smooth}}(x, y) = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} I(x+i, y+j) Ismooth(x,y)=n21i=0∑n−1j=0∑n−1I(x+i,y+j)

作用和适用场景:

适用于去除轻度噪声,如盐和胡椒噪声,但可能会导致图像细节丢失。

代码:
python 复制代码
import cv2

# 读取图像
img = cv2.imread('input_image.jpg')

# 应用均值滤波
filtered_img = cv2.blur(img, (3, 3))  # 参数 (3, 3) 表示滤波器大小

# 显示原始图像和滤波后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Mean Filtered Image', filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2. 高斯滤波 (Gaussian Filtering)

原理:

高斯滤波与均值滤波类似,但是采用了加权平均值,周围像素对中心像素的影响根据距离中心像素的位置以高斯分布加权。这种滤波器更多地保留了图像的细节。

公式:

I smooth ( x , y ) = 1 ∑ i = 0 n − 1 ∑ j = 0 n − 1 h ( i , j ) ∑ i = 0 n − 1 ∑ j = 0 n − 1 I ( x + i , y + j ) ⋅ h ( i , j ) I_{\text{smooth}}(x, y) = \frac{1}{\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} h(i, j)} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} I(x+i, y+j) \cdot h(i, j) Ismooth(x,y)=∑i=0n−1∑j=0n−1h(i,j)1i=0∑n−1j=0∑n−1I(x+i,y+j)⋅h(i,j)

其中, h ( i , j ) h(i, j) h(i,j) 是高斯核函数的值。

作用和适用场景:

适用于去除噪声并保留图像细节,常用于图像平滑和预处理。

代码:
python 复制代码
import cv2

# 读取图像
img = cv2.imread('input_image.jpg')

# 应用高斯滤波
filtered_img = cv2.GaussianBlur(img, (5, 5), 0)  # 参数 (5, 5) 表示滤波器大小,0 表示标准差

# 显示原始图像和滤波后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Gaussian Filtered Image', filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

3. 中值滤波 (Median Filtering)

原理:

中值滤波采用一个固定大小的滤波器,在图像上滑动并取周围像素的中值来替代中心像素值。对于去除椒盐噪声效果非常好。

作用和适用场景:

适用于去除椒盐噪声或脉冲噪声,能够有效保留图像细节。

代码:
python 复制代码
import cv2

# 读取图像
img = cv2.imread('input_image.jpg')

# 应用中值滤波
filtered_img = cv2.medianBlur(img, 5)  # 参数 5 表示滤波器大小

# 显示原始图像和滤波后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Median Filtered Image', filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
亿牛云爬虫专家2 小时前
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
分布式·python·架构·kubernetes·爬虫代理·监测·采集
蹦蹦跳跳真可爱5896 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij7 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm
雷羿 LexChien7 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
敲键盘的小夜猫7 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain
高压锅_12208 小时前
Django Channels WebSocket实时通信实战:从聊天功能到消息推送
python·websocket·django
胖达不服输9 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩9 小时前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
吴佳浩10 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落10 小时前
计算阶梯电费
python·python 基础·python 入门