如何证明特征值的几何重数不超过代数重数

设 λ 0 \lambda_0 λ0 是 A A A 的特征值,则 λ 0 \lambda_0 λ0 的代数重数 ≥ \geq ≥ 几何重数

证明

假设 A A A 的特征值 λ 0 \lambda_0 λ0 对应的特征向量有 q 维,记为 α 1 , . . . , α q \alpha_1, ... , \alpha_q α1,...,αq,有
A α i = λ 0 α i , i = 1 , . . . , q A\alpha_i = \lambda_0\alpha_i, i = 1, ... , q Aαi=λ0αi,i=1,...,q

以它们作为 n 维向量空间的 q q q 个基底向量,再扩充它们,将 n 维向量空间的整个基表示为 α 1 , . . . , α q , . . . , α n \alpha_1, ..., \alpha_q, ... , \alpha_n α1,...,αq,...,αn.

记矩阵 B = [ α 1 , . . . , α q , . . . α n ] B=[\alpha_1, ..., \alpha_q,... \alpha_n] B=[α1,...,αq,...αn] ,有 B B B 可逆。

A B = A [ α 1 , . . , α q , . . . , α n ] = [ λ 0 α 1 , . . . , λ 0 α q , . . . , A α n ] = [ α 1 , . . , α q , . . . , α n ] [ λ 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋯ λ 0 ∗ ⋯ ∗ 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 ∗ ⋯ ∗ ] A B = B [ λ 0 E A 12 O A 22 ] \begin{align*} AB &= A\begin{bmatrix} \alpha_1,..,\alpha_q,...,\alpha_n \end{bmatrix}= \begin{bmatrix} \lambda_0\alpha_1,...,\lambda_0\alpha_q,...,A\alpha_n \end{bmatrix}\\ &= \begin{bmatrix} \alpha_1,..,\alpha_q,...,\alpha_n \end{bmatrix} \begin{bmatrix} \lambda_0 & \cdots & 0 & * & \cdots & *\\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & \lambda_0 & * & \cdots & *\\ 0 & \cdots & 0 & * & \cdots & *\\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots &0 & * & \cdots & *\\ \end{bmatrix}\\ AB&= B \begin{bmatrix} \lambda_0E & A_{12} \\ \mathcal{O} & A_{22} \end{bmatrix} \end{align*} ABAB=A[α1,..,αq,...,αn]=[λ0α1,...,λ0αq,...,Aαn]=[α1,..,αq,...,αn] λ0⋮00⋮0⋯⋱⋯⋯⋯0⋮λ00⋮0∗⋮∗∗⋮∗⋯⋯⋯⋯∗⋮∗∗⋮∗ =B[λ0EOA12A22]

又B可逆,则
B − 1 A B = [ λ 0 E A 12 O A 22 ] = C B^{-1}AB = \begin{bmatrix} \lambda_0E & A_{12} \\ \mathcal{O} & A_{22} \end{bmatrix} = C B−1AB=[λ0EOA12A22]=C

即 A A A 相似于 C

由此计算 A A A 的特征多项式

∣ λ E − A ∣ = ∣ λ E − C ∣ = ∣ ( λ − λ 0 ) E q − A 12 O λ E n − q − A 22 ∣ = ∣ ( λ − λ 0 ) q ∣ λ E n − q − A 22 ∣ |\lambda E-A| = |\lambda E - C| =\left | \begin{matrix} (\lambda - \lambda_0) E_q & - A_{12} \\ \mathcal{O} & \lambda E_{n-q} - A_{22} \\ \end{matrix} \right | =|(\lambda - \lambda_0)^q |\lambda E_{n-q} - A_{22}| ∣λE−A∣=∣λE−C∣= (λ−λ0)EqO−A12λEn−q−A22 =∣(λ−λ0)q∣λEn−q−A22∣

由此可知该 λ \lambda λ 的n次多项式方程至少有 q 个根为 λ 0 \lambda_0 λ0,至于有没有更多的根为 λ 0 \lambda_0 λ0,取决于后面的多项式 ∣ λ E n − q − A 22 ∣ |\lambda E_{n-q} - A_{22}| ∣λEn−q−A22∣ 是否出现 ( λ − λ 0 ) (\lambda - \lambda_0) (λ−λ0)。

相关推荐
种时光的人10 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_13 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙19 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗20 小时前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
劈星斩月21 小时前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央1 天前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~1 天前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_1 天前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ1 天前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink2 天前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵