如何证明特征值的几何重数不超过代数重数

设 λ 0 \lambda_0 λ0 是 A A A 的特征值,则 λ 0 \lambda_0 λ0 的代数重数 ≥ \geq ≥ 几何重数

证明

假设 A A A 的特征值 λ 0 \lambda_0 λ0 对应的特征向量有 q 维,记为 α 1 , . . . , α q \alpha_1, ... , \alpha_q α1,...,αq,有
A α i = λ 0 α i , i = 1 , . . . , q A\alpha_i = \lambda_0\alpha_i, i = 1, ... , q Aαi=λ0αi,i=1,...,q

以它们作为 n 维向量空间的 q q q 个基底向量,再扩充它们,将 n 维向量空间的整个基表示为 α 1 , . . . , α q , . . . , α n \alpha_1, ..., \alpha_q, ... , \alpha_n α1,...,αq,...,αn.

记矩阵 B = [ α 1 , . . . , α q , . . . α n ] B=[\alpha_1, ..., \alpha_q,... \alpha_n] B=[α1,...,αq,...αn] ,有 B B B 可逆。

A B = A [ α 1 , . . , α q , . . . , α n ] = [ λ 0 α 1 , . . . , λ 0 α q , . . . , A α n ] = [ α 1 , . . , α q , . . . , α n ] [ λ 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋯ λ 0 ∗ ⋯ ∗ 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 ∗ ⋯ ∗ ] A B = B [ λ 0 E A 12 O A 22 ] \begin{align*} AB &= A\begin{bmatrix} \alpha_1,..,\alpha_q,...,\alpha_n \end{bmatrix}= \begin{bmatrix} \lambda_0\alpha_1,...,\lambda_0\alpha_q,...,A\alpha_n \end{bmatrix}\\ &= \begin{bmatrix} \alpha_1,..,\alpha_q,...,\alpha_n \end{bmatrix} \begin{bmatrix} \lambda_0 & \cdots & 0 & * & \cdots & *\\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & \lambda_0 & * & \cdots & *\\ 0 & \cdots & 0 & * & \cdots & *\\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots &0 & * & \cdots & *\\ \end{bmatrix}\\ AB&= B \begin{bmatrix} \lambda_0E & A_{12} \\ \mathcal{O} & A_{22} \end{bmatrix} \end{align*} ABAB=A[α1,..,αq,...,αn]=[λ0α1,...,λ0αq,...,Aαn]=[α1,..,αq,...,αn] λ0⋮00⋮0⋯⋱⋯⋯⋯0⋮λ00⋮0∗⋮∗∗⋮∗⋯⋯⋯⋯∗⋮∗∗⋮∗ =B[λ0EOA12A22]

又B可逆,则
B − 1 A B = [ λ 0 E A 12 O A 22 ] = C B^{-1}AB = \begin{bmatrix} \lambda_0E & A_{12} \\ \mathcal{O} & A_{22} \end{bmatrix} = C B−1AB=[λ0EOA12A22]=C

即 A A A 相似于 C

由此计算 A A A 的特征多项式

∣ λ E − A ∣ = ∣ λ E − C ∣ = ∣ ( λ − λ 0 ) E q − A 12 O λ E n − q − A 22 ∣ = ∣ ( λ − λ 0 ) q ∣ λ E n − q − A 22 ∣ |\lambda E-A| = |\lambda E - C| =\left | \begin{matrix} (\lambda - \lambda_0) E_q & - A_{12} \\ \mathcal{O} & \lambda E_{n-q} - A_{22} \\ \end{matrix} \right | =|(\lambda - \lambda_0)^q |\lambda E_{n-q} - A_{22}| ∣λE−A∣=∣λE−C∣= (λ−λ0)EqO−A12λEn−q−A22 =∣(λ−λ0)q∣λEn−q−A22∣

由此可知该 λ \lambda λ 的n次多项式方程至少有 q 个根为 λ 0 \lambda_0 λ0,至于有没有更多的根为 λ 0 \lambda_0 λ0,取决于后面的多项式 ∣ λ E n − q − A 22 ∣ |\lambda E_{n-q} - A_{22}| ∣λEn−q−A22∣ 是否出现 ( λ − λ 0 ) (\lambda - \lambda_0) (λ−λ0)。

相关推荐
FS_tar1 天前
高斯消元矩阵
c++·算法·矩阵
云手机掌柜2 天前
技术深度解析:指纹云手机如何通过设备指纹隔离技术重塑多账号安全管理
大数据·服务器·安全·智能手机·矩阵·云计算
agilearchitect2 天前
MATLAB线性代数函数完全指南
线性代数·其他·决策树·matlab
没书读了2 天前
考研复习-线性代数强化-向量组和方程组特征值
python·线性代数·机器学习
A尘埃4 天前
线性代数(标量与向量+矩阵与张量+矩阵求导)
python·线性代数·矩阵
WaWaJie_Ngen4 天前
LevOJ P2080 炼金铺 II [矩阵解法]
c++·线性代数·算法·矩阵
天天向上的鹿茸4 天前
用矩阵实现元素绕不定点旋转
前端·线性代数·矩阵
两只程序猿5 天前
数据可视化 | 热力图Heatmap绘制Python代码 相关性矩阵学术可视化
python·信息可视化·矩阵
一又四分之一.5 天前
线代一轮复习
线性代数
元基时代6 天前
专业的短视频发布矩阵哪家靠谱
大数据·人工智能·python·矩阵