如何证明特征值的几何重数不超过代数重数

设 λ 0 \lambda_0 λ0 是 A A A 的特征值,则 λ 0 \lambda_0 λ0 的代数重数 ≥ \geq ≥ 几何重数

证明

假设 A A A 的特征值 λ 0 \lambda_0 λ0 对应的特征向量有 q 维,记为 α 1 , . . . , α q \alpha_1, ... , \alpha_q α1,...,αq,有
A α i = λ 0 α i , i = 1 , . . . , q A\alpha_i = \lambda_0\alpha_i, i = 1, ... , q Aαi=λ0αi,i=1,...,q

以它们作为 n 维向量空间的 q q q 个基底向量,再扩充它们,将 n 维向量空间的整个基表示为 α 1 , . . . , α q , . . . , α n \alpha_1, ..., \alpha_q, ... , \alpha_n α1,...,αq,...,αn.

记矩阵 B = [ α 1 , . . . , α q , . . . α n ] B=[\alpha_1, ..., \alpha_q,... \alpha_n] B=[α1,...,αq,...αn] ,有 B B B 可逆。

A B = A [ α 1 , . . , α q , . . . , α n ] = [ λ 0 α 1 , . . . , λ 0 α q , . . . , A α n ] = [ α 1 , . . , α q , . . . , α n ] [ λ 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋱ ⋮ ⋮ ⋮ 0 ⋯ λ 0 ∗ ⋯ ∗ 0 ⋯ 0 ∗ ⋯ ∗ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 ∗ ⋯ ∗ ] A B = B [ λ 0 E A 12 O A 22 ] \begin{align*} AB &= A\begin{bmatrix} \alpha_1,..,\alpha_q,...,\alpha_n \end{bmatrix}= \begin{bmatrix} \lambda_0\alpha_1,...,\lambda_0\alpha_q,...,A\alpha_n \end{bmatrix}\\ &= \begin{bmatrix} \alpha_1,..,\alpha_q,...,\alpha_n \end{bmatrix} \begin{bmatrix} \lambda_0 & \cdots & 0 & * & \cdots & *\\ \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & \lambda_0 & * & \cdots & *\\ 0 & \cdots & 0 & * & \cdots & *\\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots &0 & * & \cdots & *\\ \end{bmatrix}\\ AB&= B \begin{bmatrix} \lambda_0E & A_{12} \\ \mathcal{O} & A_{22} \end{bmatrix} \end{align*} ABAB=A[α1,..,αq,...,αn]=[λ0α1,...,λ0αq,...,Aαn]=[α1,..,αq,...,αn] λ0⋮00⋮0⋯⋱⋯⋯⋯0⋮λ00⋮0∗⋮∗∗⋮∗⋯⋯⋯⋯∗⋮∗∗⋮∗ =B[λ0EOA12A22]

又B可逆,则
B − 1 A B = [ λ 0 E A 12 O A 22 ] = C B^{-1}AB = \begin{bmatrix} \lambda_0E & A_{12} \\ \mathcal{O} & A_{22} \end{bmatrix} = C B−1AB=[λ0EOA12A22]=C

即 A A A 相似于 C

由此计算 A A A 的特征多项式

∣ λ E − A ∣ = ∣ λ E − C ∣ = ∣ ( λ − λ 0 ) E q − A 12 O λ E n − q − A 22 ∣ = ∣ ( λ − λ 0 ) q ∣ λ E n − q − A 22 ∣ |\lambda E-A| = |\lambda E - C| =\left | \begin{matrix} (\lambda - \lambda_0) E_q & - A_{12} \\ \mathcal{O} & \lambda E_{n-q} - A_{22} \\ \end{matrix} \right | =|(\lambda - \lambda_0)^q |\lambda E_{n-q} - A_{22}| ∣λE−A∣=∣λE−C∣= (λ−λ0)EqO−A12λEn−q−A22 =∣(λ−λ0)q∣λEn−q−A22∣

由此可知该 λ \lambda λ 的n次多项式方程至少有 q 个根为 λ 0 \lambda_0 λ0,至于有没有更多的根为 λ 0 \lambda_0 λ0,取决于后面的多项式 ∣ λ E n − q − A 22 ∣ |\lambda E_{n-q} - A_{22}| ∣λEn−q−A22∣ 是否出现 ( λ − λ 0 ) (\lambda - \lambda_0) (λ−λ0)。

相关推荐
Quz3 小时前
OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯
图像处理·人工智能·opencv·计算机视觉·矩阵
肖田变强不变秃9 小时前
C++实现有限元计算 矩阵装配Assembly类
开发语言·c++·矩阵·有限元·ansys
十年一梦实验室10 小时前
【Eigen教程】矩阵、数组和向量类(二)
线性代数·算法·矩阵
BlackPercy12 小时前
【线性代数】列主元法求矩阵的逆
线性代数·机器学习·矩阵
EQUINOX112 小时前
3b1b线性代数基础
人工智能·线性代数·机器学习
retaw_017 小时前
74. 搜索二维矩阵
线性代数·矩阵
BlackPercy1 天前
【线性代数】基础版本的高斯消元法
线性代数·julia
金融OG2 天前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
木与长清2 天前
利用MetaNeighbor验证重复性和跨物种分群
矩阵·数据分析·r语言
肖田变强不变秃2 天前
C++实现矩阵Matrix类 实现基本运算
开发语言·c++·matlab·矩阵·有限元·ansys