集合的自反关系和对称关系

集合的自反关系和对称关系

一:集合的自反关系

1:原理:

从给定的关系矩阵来断判关系R是否为自反是很容易的。若M(R的关系矩阵)的主对角线元素均为1,则R是自反关系;若M(R的关系矩阵)的主对角线元素均为0,则R是反自反关系;若M(R的关系矩阵)的主对角线元素既有1又有0,则R既不是自反关系也不是反自反关系。

2:代码实现

c 复制代码
#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;
	}
	#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;

二:对称关系

1:原理:

若M(R的关系矩阵)为对称矩阵,则R是对称关系;若M为反对称矩阵,则R是反对称关系。

2:代码实现

c 复制代码
//判断对称关系
int fun3(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] != R[j][i]) {
				return 0;
			}
		}
	}
	return 1;
}
//判断反对称关系
int fun4(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] == 1 && R[j][i] == 1 && i != j) {
				return 0;
			}
		}
	}
	return 1;
}
int main() {
	int R[4][4] = { 0 };
	printf("请输入关系矩阵:\n");
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			scanf("%d", &R[i][j]);
		}
	}
	 if ((fun1(R) + fun2(R))==0) {
		 printf("R既不是自反关系也不是反自反关系\n");
	}

	 if (fun3(R)) {
		 printf("R具有对称关系\n");
	 }
	 if (fun4(R)) {
		 printf("R具有反对称关系\n");
	}
	 if (fun3(R) + fun4(R) == 2) {
		 printf("R既具有对称关系又具有反对称关系\n");
	 }
	 if (fun3(R) + fun4(R) == 0) {
		 printf("R既不具有对称关系又不具有反对称关系\n");
	 }
	 return 0;
}

三:总结

c 复制代码
#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;
}
//判断对称关系
int fun3(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] != R[j][i]) {
				return 0;
			}
		}
	}
	return 1;
}
//判断反对称关系
int fun4(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] == 1 && R[j][i] == 1 && i != j) {
				return 0;
			}
		}
	}
	return 1;
}
int main() {
	int R[4][4] = { 0 };
	printf("请输入关系矩阵:\n");
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			scanf("%d", &R[i][j]);
		}
	}
	if (fun1(R)) {
		printf("R是自反关系\n");
	}
    if (fun2(R)) {
		printf("R是反自反关系\n");
	}
	 if ((fun1(R) + fun2(R))==0) {
		 printf("R既不是自反关系也不是反自反关系\n");
	}

	 if (fun3(R)) {
		 printf("R具有对称关系\n");
	 }
	 if (fun4(R)) {
		 printf("R具有反对称关系\n");
	}
	 if (fun3(R) + fun4(R) == 2) {
		 printf("R既具有对称关系又具有反对称关系\n");
	 }
	 if (fun3(R) + fun4(R) == 0) {
		 printf("R既不具有对称关系又不具有反对称关系\n");
	 }
	 return 0;
}
相关推荐
XH华3 小时前
初识C语言之二维数组(下)
c语言·算法
南宫生4 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
不想当程序猿_4 小时前
【蓝桥杯每日一题】求和——前缀和
算法·前缀和·蓝桥杯
落魄君子4 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
菜鸡中的奋斗鸡→挣扎鸡4 小时前
滑动窗口 + 算法复习
数据结构·算法
Lenyiin4 小时前
第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
c++·算法·leetcode·周赛·lenyiin
郭wes代码4 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7245 小时前
LILAC采样算法
人工智能·算法·机器学习
菌菌的快乐生活5 小时前
理解支持向量机
算法·机器学习·支持向量机
大山同学5 小时前
第三章线性判别函数(二)
线性代数·算法·机器学习