集合的自反关系和对称关系

集合的自反关系和对称关系

一:集合的自反关系

1:原理:

从给定的关系矩阵来断判关系R是否为自反是很容易的。若M(R的关系矩阵)的主对角线元素均为1,则R是自反关系;若M(R的关系矩阵)的主对角线元素均为0,则R是反自反关系;若M(R的关系矩阵)的主对角线元素既有1又有0,则R既不是自反关系也不是反自反关系。

2:代码实现

c 复制代码
#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;
	}
	#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;

二:对称关系

1:原理:

若M(R的关系矩阵)为对称矩阵,则R是对称关系;若M为反对称矩阵,则R是反对称关系。

2:代码实现

c 复制代码
//判断对称关系
int fun3(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] != R[j][i]) {
				return 0;
			}
		}
	}
	return 1;
}
//判断反对称关系
int fun4(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] == 1 && R[j][i] == 1 && i != j) {
				return 0;
			}
		}
	}
	return 1;
}
int main() {
	int R[4][4] = { 0 };
	printf("请输入关系矩阵:\n");
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			scanf("%d", &R[i][j]);
		}
	}
	 if ((fun1(R) + fun2(R))==0) {
		 printf("R既不是自反关系也不是反自反关系\n");
	}

	 if (fun3(R)) {
		 printf("R具有对称关系\n");
	 }
	 if (fun4(R)) {
		 printf("R具有反对称关系\n");
	}
	 if (fun3(R) + fun4(R) == 2) {
		 printf("R既具有对称关系又具有反对称关系\n");
	 }
	 if (fun3(R) + fun4(R) == 0) {
		 printf("R既不具有对称关系又不具有反对称关系\n");
	 }
	 return 0;
}

三:总结

c 复制代码
#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;
}
//判断对称关系
int fun3(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] != R[j][i]) {
				return 0;
			}
		}
	}
	return 1;
}
//判断反对称关系
int fun4(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] == 1 && R[j][i] == 1 && i != j) {
				return 0;
			}
		}
	}
	return 1;
}
int main() {
	int R[4][4] = { 0 };
	printf("请输入关系矩阵:\n");
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			scanf("%d", &R[i][j]);
		}
	}
	if (fun1(R)) {
		printf("R是自反关系\n");
	}
    if (fun2(R)) {
		printf("R是反自反关系\n");
	}
	 if ((fun1(R) + fun2(R))==0) {
		 printf("R既不是自反关系也不是反自反关系\n");
	}

	 if (fun3(R)) {
		 printf("R具有对称关系\n");
	 }
	 if (fun4(R)) {
		 printf("R具有反对称关系\n");
	}
	 if (fun3(R) + fun4(R) == 2) {
		 printf("R既具有对称关系又具有反对称关系\n");
	 }
	 if (fun3(R) + fun4(R) == 0) {
		 printf("R既不具有对称关系又不具有反对称关系\n");
	 }
	 return 0;
}
相关推荐
葫三生1 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
智者知已应修善业2 小时前
【51单片机用数码管显示流水灯的种类是按钮控制数码管加一和流水灯】2022-6-14
c语言·经验分享·笔记·单片机·嵌入式硬件·51单片机
拓端研究室3 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安5 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董6 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭9 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess079 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁9 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu10 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu10 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划