集合的自反关系和对称关系

集合的自反关系和对称关系

一:集合的自反关系

1:原理:

从给定的关系矩阵来断判关系R是否为自反是很容易的。若M(R的关系矩阵)的主对角线元素均为1,则R是自反关系;若M(R的关系矩阵)的主对角线元素均为0,则R是反自反关系;若M(R的关系矩阵)的主对角线元素既有1又有0,则R既不是自反关系也不是反自反关系。

2:代码实现

c 复制代码
#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;
	}
	#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;

二:对称关系

1:原理:

若M(R的关系矩阵)为对称矩阵,则R是对称关系;若M为反对称矩阵,则R是反对称关系。

2:代码实现

c 复制代码
//判断对称关系
int fun3(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] != R[j][i]) {
				return 0;
			}
		}
	}
	return 1;
}
//判断反对称关系
int fun4(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] == 1 && R[j][i] == 1 && i != j) {
				return 0;
			}
		}
	}
	return 1;
}
int main() {
	int R[4][4] = { 0 };
	printf("请输入关系矩阵:\n");
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			scanf("%d", &R[i][j]);
		}
	}
	 if ((fun1(R) + fun2(R))==0) {
		 printf("R既不是自反关系也不是反自反关系\n");
	}

	 if (fun3(R)) {
		 printf("R具有对称关系\n");
	 }
	 if (fun4(R)) {
		 printf("R具有反对称关系\n");
	}
	 if (fun3(R) + fun4(R) == 2) {
		 printf("R既具有对称关系又具有反对称关系\n");
	 }
	 if (fun3(R) + fun4(R) == 0) {
		 printf("R既不具有对称关系又不具有反对称关系\n");
	 }
	 return 0;
}

三:总结

c 复制代码
#include <stdio.h>
//判断自反关系
int fun1(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 1) {
			return 0;
		}
	}
	return 1;
}
//判断反自反关系
int fun2(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		if (R[i][i] != 0) {
			return 0;
		}
	}
	return 1;
}
//判断对称关系
int fun3(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] != R[j][i]) {
				return 0;
			}
		}
	}
	return 1;
}
//判断反对称关系
int fun4(int R[][4]) {
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			if (R[i][j] == 1 && R[j][i] == 1 && i != j) {
				return 0;
			}
		}
	}
	return 1;
}
int main() {
	int R[4][4] = { 0 };
	printf("请输入关系矩阵:\n");
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 4; j++) {
			scanf("%d", &R[i][j]);
		}
	}
	if (fun1(R)) {
		printf("R是自反关系\n");
	}
    if (fun2(R)) {
		printf("R是反自反关系\n");
	}
	 if ((fun1(R) + fun2(R))==0) {
		 printf("R既不是自反关系也不是反自反关系\n");
	}

	 if (fun3(R)) {
		 printf("R具有对称关系\n");
	 }
	 if (fun4(R)) {
		 printf("R具有反对称关系\n");
	}
	 if (fun3(R) + fun4(R) == 2) {
		 printf("R既具有对称关系又具有反对称关系\n");
	 }
	 if (fun3(R) + fun4(R) == 0) {
		 printf("R既不具有对称关系又不具有反对称关系\n");
	 }
	 return 0;
}
相关推荐
爪哇学长32 分钟前
双指针算法详解:原理、应用场景及代码示例
java·数据结构·算法
爱摸鱼的孔乙己34 分钟前
【数据结构】链表(leetcode)
c语言·数据结构·c++·链表·csdn
Dola_Pan36 分钟前
C语言:数组转换指针的时机
c语言·开发语言·算法
繁依Fanyi1 小时前
简易安卓句分器实现
java·服务器·开发语言·算法·eclipse
烦躁的大鼻嘎1 小时前
模拟算法实例讲解:从理论到实践的编程之旅
数据结构·c++·算法·leetcode
IU宝1 小时前
C/C++内存管理
java·c语言·c++
qq_459730031 小时前
C 语言面向对象
c语言·开发语言
C++忠实粉丝1 小时前
计算机网络socket编程(4)_TCP socket API 详解
网络·数据结构·c++·网络协议·tcp/ip·计算机网络·算法
用户37791362947552 小时前
【循环神经网络】只会Python,也能让AI写出周杰伦风格的歌词
人工智能·算法
福大大架构师每日一题2 小时前
文心一言 VS 讯飞星火 VS chatgpt (396)-- 算法导论25.2 1题
算法·文心一言