flink中配置Rockdb的重要配置项

背景

由于我们在flink中使用了状态比较大,无法完全把状态数据存放到tm的堆内存中,所以我们选择了把状态存放到rockdb上,也就是使用rockdb作为状态后端存储,本文就是简单记录下使用rockdb状态后端存储的几个重要的配置项

使用rockdb状态后端

1.首先看一下rockdb的设计图

从中需要注意几点:

1.1 每次状态读取操作不一定会经过磁盘,有可能直接从内存中就可以获取到记录了,也有可能要经过好几次IO操作才能读取到记录

1.2 每次写操作都会把记录先顺序写到WAL日志文件中,然后写入memtable内存表,由于写操作是顺序写,虽然比不上直接操作内存,但是性能也不会很差

2.flink全局维度的重要的配置项:

state.backend.rocksdb.memory.managed 默认值true,开启rockdb作为flink状态后端存储

taskmanager.memory.managed.size 默认不配置,显示给rockdb用的堆外内存的总大小

taskmanager.memory.managed.fraction 默认0.4,当参数taskmanager.memory.managed.size没有配置时,给rockdb用的堆外内存的总大小占堆大小的比例

3.rockdb内部的重要的配置项

我们知道rockdb中内部的内存占用主要包含:memtable表,索引(包括数据索引和布隆过滤器索引),以及BlockCache,以下两个配置是调整rockdb内部的内存占用比例的

state.backend.rocksdb.memory.write-buffer-ratio,默认值 0.5,即 50% 的给定内存会分配给写缓冲区使用,这里也就是memtable使用的内存

state.backend.rocksdb.memory.high-prio-pool-ratio,默认值 0.1,即 10% 的 block cache 内存会优先分配给索引及过滤器。 我们强烈建议不要将此值设置为零,以防止索引和过滤器被频繁踢出缓存而导致性能问题

相关推荐
喂完待续4 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交4 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特10 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
sleetdream12 小时前
Flink Sql 按分钟或日期统计数据量
sql·flink
1892280486113 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
武子康14 小时前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.15 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧15 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
数据智研16 小时前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能
辞--忧1 天前
双十一美妆数据分析:洞察消费趋势与行业秘密
大数据