flink中配置Rockdb的重要配置项

背景

由于我们在flink中使用了状态比较大,无法完全把状态数据存放到tm的堆内存中,所以我们选择了把状态存放到rockdb上,也就是使用rockdb作为状态后端存储,本文就是简单记录下使用rockdb状态后端存储的几个重要的配置项

使用rockdb状态后端

1.首先看一下rockdb的设计图

从中需要注意几点:

1.1 每次状态读取操作不一定会经过磁盘,有可能直接从内存中就可以获取到记录了,也有可能要经过好几次IO操作才能读取到记录

1.2 每次写操作都会把记录先顺序写到WAL日志文件中,然后写入memtable内存表,由于写操作是顺序写,虽然比不上直接操作内存,但是性能也不会很差

2.flink全局维度的重要的配置项:

state.backend.rocksdb.memory.managed 默认值true,开启rockdb作为flink状态后端存储

taskmanager.memory.managed.size 默认不配置,显示给rockdb用的堆外内存的总大小

taskmanager.memory.managed.fraction 默认0.4,当参数taskmanager.memory.managed.size没有配置时,给rockdb用的堆外内存的总大小占堆大小的比例

3.rockdb内部的重要的配置项

我们知道rockdb中内部的内存占用主要包含:memtable表,索引(包括数据索引和布隆过滤器索引),以及BlockCache,以下两个配置是调整rockdb内部的内存占用比例的

state.backend.rocksdb.memory.write-buffer-ratio,默认值 0.5,即 50% 的给定内存会分配给写缓冲区使用,这里也就是memtable使用的内存

state.backend.rocksdb.memory.high-prio-pool-ratio,默认值 0.1,即 10% 的 block cache 内存会优先分配给索引及过滤器。 我们强烈建议不要将此值设置为零,以防止索引和过滤器被频繁踢出缓存而导致性能问题

相关推荐
直裾1 小时前
Mapreduce的使用
大数据·数据库·mapreduce
麻芝汤圆3 小时前
使用 MapReduce 进行高效数据清洗:从理论到实践
大数据·linux·服务器·网络·数据库·windows·mapreduce
树莓集团4 小时前
树莓集团海南落子:自贸港布局的底层逻辑
大数据
不剪发的Tony老师4 小时前
Hue:一个大数据查询工具
大数据
靠近彗星4 小时前
如何检查 HBase Master 是否已完成初始化?| 详细排查指南
大数据·数据库·分布式·hbase
墨染丶eye5 小时前
数据仓库项目启动与管理
大数据·数据仓库·spark
SelectDB5 小时前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·aigc
遇到困难睡大觉哈哈5 小时前
Git推送错误解决方案:`rejected -> master (fetch first)`
大数据·git·elasticsearch
Roam-G5 小时前
Elasticsearch 证书问题解决
大数据·elasticsearch·jenkins
深蓝易网6 小时前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops