flink中配置Rockdb的重要配置项

背景

由于我们在flink中使用了状态比较大,无法完全把状态数据存放到tm的堆内存中,所以我们选择了把状态存放到rockdb上,也就是使用rockdb作为状态后端存储,本文就是简单记录下使用rockdb状态后端存储的几个重要的配置项

使用rockdb状态后端

1.首先看一下rockdb的设计图

从中需要注意几点:

1.1 每次状态读取操作不一定会经过磁盘,有可能直接从内存中就可以获取到记录了,也有可能要经过好几次IO操作才能读取到记录

1.2 每次写操作都会把记录先顺序写到WAL日志文件中,然后写入memtable内存表,由于写操作是顺序写,虽然比不上直接操作内存,但是性能也不会很差

2.flink全局维度的重要的配置项:

state.backend.rocksdb.memory.managed 默认值true,开启rockdb作为flink状态后端存储

taskmanager.memory.managed.size 默认不配置,显示给rockdb用的堆外内存的总大小

taskmanager.memory.managed.fraction 默认0.4,当参数taskmanager.memory.managed.size没有配置时,给rockdb用的堆外内存的总大小占堆大小的比例

3.rockdb内部的重要的配置项

我们知道rockdb中内部的内存占用主要包含:memtable表,索引(包括数据索引和布隆过滤器索引),以及BlockCache,以下两个配置是调整rockdb内部的内存占用比例的

state.backend.rocksdb.memory.write-buffer-ratio,默认值 0.5,即 50% 的给定内存会分配给写缓冲区使用,这里也就是memtable使用的内存

state.backend.rocksdb.memory.high-prio-pool-ratio,默认值 0.1,即 10% 的 block cache 内存会优先分配给索引及过滤器。 我们强烈建议不要将此值设置为零,以防止索引和过滤器被频繁踢出缓存而导致性能问题

相关推荐
boonya2 小时前
Elasticsearch核心原理与面试总结
大数据·elasticsearch·面试
TDengine (老段)3 小时前
TDengine 时间函数 WEEKDAY() 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
LQ深蹲不写BUG5 小时前
ElasticSearch 基础内容深度解析
大数据·elasticsearch·搜索引擎
Debug_Snail7 小时前
【营销策略算法】关联规则学习-购物篮分析
大数据·人工智能
BYSJMG8 小时前
计算机毕设大数据方向:基于Spark+Hadoop的餐饮外卖平台数据分析系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
java水泥工9 小时前
基于Echarts+HTML5可视化数据大屏展示-茶叶种植大数据溯源平台
大数据·echarts·html5
华略创新9 小时前
标准化与定制化的平衡艺术:制造企业如何通过灵活配置释放系统价值
大数据·人工智能·制造·crm·管理系统·erp·企业管理
半夏陌离11 小时前
SQL 实战指南:电商订单数据分析(订单 / 用户 / 商品表关联 + 统计需求)
java·大数据·前端
成长之路51413 小时前
【面板数据】各省制造业出口技术复杂度数据集(2010-2023年)
大数据