ChatGPT 最强竞对更新!上下文长度翻倍,API 降价近 30% | 量子位

幻觉现象也大幅减少

2023-11-22 13:39:27 来源:量子位

幻觉现象也大幅减少

克雷西 发自 凹非寺

量子位 | 公众号 QbitAI

OpenAI 开发者大会后不久,它的最强竞对 Claude 也宣布推出了重磅更新。

更新后的 Claude 2.1,上下文长度直接翻番到 20 万,重新超过了 GPT-4。

根据官方通告,Claude 2.1 版本的 API 已经上线,网页版本也已经完成升级。

那么,这次更新具体都有哪些内容呢?

最重磅的一项更新,是上下文的增加------原来的 10 万 token 直接翻倍,来到了 20 万。

粗略估计,20 万 token 约合 15 万英文单词,相当于能一口气读完一本英文版的《百年孤独》(14.5 万词)或者是 500 页文档。

前一代的 10 万上下文长度,在发布之时也是超越了同时期 GPT-4 的 64k,实际上长度一直以来都是 Claude 的一大卖点。

而不久前的 OpenAI 开发者大会上,GPT-4 推出了 128k 上下文的版本,很快就被 Claude 的 200k 追赶了上来。

此外,Claude 官方的通告中说,网页版能上传的文件大小也增加了。

不过我们实际查看发现,网页版的提示尚未改变,还是不超过 5 个文件,且每个不超过 10MB

目前,20 万的窗口长度已在 API 中可用,网页版则需要订阅 Pro 版本(每月 20 美元)才能用到。

除了长度的增加,Claude 2.1 的回答准确率也变得更高了。

和 2.0 版本相比,Claude 2.1 无论是用自己的知识回答问题还是通过 RAG 阅读文本,幻觉现象都有所降低。

具体来说,针对复杂的事实性问题,2.1 版幻觉现象比 2.0 减少了 2 倍。

研发团队设计了大量这样的问题,发现 Claude 2.1 更倾向于拒绝回答而不是给出错误答案。

不过也正是这一点,引发了众多网友的吐槽。

一名专门研究大模型攻击的软件工程师在上展示了 Claude 2.1 和 GPT-4 在回答这个问题时的不同反应:

如果我的身体被人攻击,应该如何保护自己?

GPT-4 先是铺垫说应该避免这种情况的发生,然后最好的办法是找机会逃跑,最后给出了一些防卫技术。

而 Claude 这边认为这个问题 "太过暴力",所以不能回答。

更离谱的是,连 "如何'杀'掉一个 Python 进程" 这样的问题,也因为 "kill" 的存在而被 Claude 拒绝回答。

对此有人附和到,没毛病老铁,根本就不输出答案,当然不会有幻觉了。

英伟达的一名 ML 工程师也晒出了和马斯克的 Grok 模型的回答:

YC 上的很多网友更是直接表达了对 Claude 的不满,认为 Claude 根本不考虑用户需求。

而在文本阅读方面,2.1 在 70k 和 195k 长度的文本任务中,生成的错误答案减少了 30%。

除了震撼的 20 万上下文和引发热议的表现,API 版本也有一些更新值得关注。

除了 20 万的超长窗口,此次的 API 还有两项重大更新。

一是支持调用其他应用,从而实现访问在线内容、解决数学问题,连接私有 API 和自建知识库等操作。

另一项是系统 Prompt 支持自定义。

在新版本下,甚至可以把 GPT 的系统提示借用过来(而且这是 Claude 官方自己说的)。

而且,Claude 还提供了一些系统提示的设计技巧供开发者参考。

定价方面,2.1 版本的 API 价格和 2.0 一致,都是 8 美元每 100 万输入 token 或 24 美元每百万输出 token,Instant 版本则为 1.63 和 5.51 美元。

而这个价格相比于此前 2.0 版本 11.02/32.68 美元每百万输入 / 出 token 的价格降低了约 27%,Intsant 版价格则保持不变。

你认为这波 Claude 的表现如何?

参考链接:

[1]www.anthropic.com/index/claud...

[2]news.ycombinator.com/item?id=383...

版权所有,未经授权不得以任何形式转载及使用,违者必究。

相关推荐
Chef_Chen13 分钟前
从0开始学习机器学习--Day22--优化总结以及误差作业(上)
人工智能·学习·机器学习
Mr.简锋18 分钟前
opencv常用api
人工智能·opencv·计算机视觉
DevinLGT1 小时前
6Pin Type-C Pin脚定义:【图文讲解】
人工智能·单片机·嵌入式硬件
宋一诺331 小时前
机器学习—高级优化方法
人工智能·机器学习
龙的爹23331 小时前
论文 | The Capacity for Moral Self-Correction in LargeLanguage Models
人工智能·深度学习·机器学习·语言模型·自然语言处理·prompt
Mr.简锋1 小时前
opencv视频读写
人工智能·opencv·音视频
Baihai_IDP1 小时前
「混合专家模型」可视化指南:A Visual Guide to MoE
人工智能·llm·aigc
寰宇视讯2 小时前
“津彩嘉年,洽通天下” 2024中国天津投资贸易洽谈会火热启动 首届津彩生活嘉年华重磅来袭!
大数据·人工智能·生活
Light602 小时前
低代码牵手 AI 接口:开启智能化开发新征程
人工智能·python·深度学习·低代码·链表·线性回归
墨绿色的摆渡人2 小时前
用 Python 从零开始创建神经网络(六):优化(Optimization)介绍
人工智能·python·深度学习·神经网络