机器学习技术栈—— 概率学基础

机器学习技术栈------ 概率学基础

先验概率、后验概率、似然概率

首先
p ( w ∣ X ) = p ( X ∣ w ) ∗ p ( w ) p ( X ) p(w|X) =\frac{ p(X|w)*p(w)}{p(X)} p(w∣X)=p(X)p(X∣w)∗p(w)

也就有
p ( w ∣ X ) ∝ p ( X ∣ w ) ∗ p ( w ) p(w|X) \propto p(X|w)*p(w) p(w∣X)∝p(X∣w)∗p(w)
p ( w ) p(w) p(w)是先验 (prior)概率,即 入为主,基于历史规律或经 ,对事件 w w w做出概率为 p ( w ) p(w) p(w)的判断,而非基于客观事实。
p ( w ∣ X ) p(w|X) p(w∣X)是后验 (posterior)概率,即马 炮,基于事实的校 ,对事件 w w w做出一定条件下的概率判断。
p ( X ∣ w ) p(X|w) p(X∣w)是似然 (likelihood)概率,似然,即似乎这样 ,也就是事件 w w w发生时,发生 X X X的概率似乎是 p ( X ∣ w ) p(X|w) p(X∣w)这么大,是一个根据数据统计得到的概率,这一点性质和先验是一样的。

如何科学的马后炮得到后验概率呢?就要先依托历史规律,然后摆数据,历史规律+实事求是的数据就是科学的马后炮。后验概率,是在有数据后,对先验概率进行纠偏的概率。

参考文章
Bayes' Rule -- Explained For Beginners
《【辨析】先验概率、后验概率、似然概率》

总体标准差和样本标准差

样本标准差(sample standard deviation): S = ∑ ( X i − X ˉ ) 2 n − 1 S =\sqrt{ \frac{\sum(X_i - \bar X)^2}{n-1}} S=n−1∑(Xi−Xˉ)2

总体标准差(population standard deviation): σ = ∑ ( X i − X ˉ ) 2 n \sigma =\sqrt{ \frac{\sum(X_i - \bar X)^2}{n}} σ=n∑(Xi−Xˉ)2 ,population也有全体的意思

参考文章
Standard_deviation - Wiki
相关推荐
paopaokaka_luck3 分钟前
基于SpringBoot+Vue的DIY手工社预约管理系统(Echarts图形化、腾讯地图API)
java·vue.js·人工智能·spring boot·后端·echarts
出门吃三碗饭1 小时前
如何在LLM大语言模型上微调来优化数学推理能力?
android·人工智能·语言模型
小白狮ww1 小时前
清华联合字节推出 HuMo,实现三模态协同生成人物视频
人工智能·深度学习·机器学习·音视频·视频生成·多模态模型·人物视频
RAG专家3 小时前
【Mixture-of-RAG】将文本和表格与大型语言模型相结合
人工智能·语言模型·rag·检索增强生成
星期天要睡觉6 小时前
自然语言处理(NLP)——自然语言处理原理、发展历程、核心技术
人工智能·自然语言处理
低音钢琴6 小时前
【人工智能系列:机器学习学习和进阶01】机器学习初学者指南:理解核心算法与应用
人工智能·算法·机器学习
大千AI助手7 小时前
Hoeffding树:数据流挖掘中的高效分类算法详解
人工智能·机器学习·分类·数据挖掘·流数据··hoeffding树
新知图书7 小时前
大模型微调定义与分类
人工智能·大模型应用开发·大模型应用
山烛8 小时前
一文读懂YOLOv4:目标检测领域的技术融合与性能突破
人工智能·yolo·目标检测·计算机视觉·yolov4
大千AI助手8 小时前
独热编码:分类数据处理的基石技术
人工智能·机器学习·分类·数据挖掘·特征工程·one-hot·独热编码