机器学习技术栈—— 概率学基础

机器学习技术栈------ 概率学基础

先验概率、后验概率、似然概率

首先
p ( w ∣ X ) = p ( X ∣ w ) ∗ p ( w ) p ( X ) p(w|X) =\frac{ p(X|w)*p(w)}{p(X)} p(w∣X)=p(X)p(X∣w)∗p(w)

也就有
p ( w ∣ X ) ∝ p ( X ∣ w ) ∗ p ( w ) p(w|X) \propto p(X|w)*p(w) p(w∣X)∝p(X∣w)∗p(w)
p ( w ) p(w) p(w)是先验 (prior)概率,即 入为主,基于历史规律或经 ,对事件 w w w做出概率为 p ( w ) p(w) p(w)的判断,而非基于客观事实。
p ( w ∣ X ) p(w|X) p(w∣X)是后验 (posterior)概率,即马 炮,基于事实的校 ,对事件 w w w做出一定条件下的概率判断。
p ( X ∣ w ) p(X|w) p(X∣w)是似然 (likelihood)概率,似然,即似乎这样 ,也就是事件 w w w发生时,发生 X X X的概率似乎是 p ( X ∣ w ) p(X|w) p(X∣w)这么大,是一个根据数据统计得到的概率,这一点性质和先验是一样的。

如何科学的马后炮得到后验概率呢?就要先依托历史规律,然后摆数据,历史规律+实事求是的数据就是科学的马后炮。后验概率,是在有数据后,对先验概率进行纠偏的概率。

参考文章
Bayes' Rule -- Explained For Beginners
《【辨析】先验概率、后验概率、似然概率》

总体标准差和样本标准差

样本标准差(sample standard deviation): S = ∑ ( X i − X ˉ ) 2 n − 1 S =\sqrt{ \frac{\sum(X_i - \bar X)^2}{n-1}} S=n−1∑(Xi−Xˉ)2

总体标准差(population standard deviation): σ = ∑ ( X i − X ˉ ) 2 n \sigma =\sqrt{ \frac{\sum(X_i - \bar X)^2}{n}} σ=n∑(Xi−Xˉ)2 ,population也有全体的意思

参考文章
Standard_deviation - Wiki
相关推荐
乌恩大侠1 小时前
自动驾驶的未来:多模态传感器钻机
人工智能·机器学习·自动驾驶
光锥智能2 小时前
AI办公的效率革命,金山办公从未被颠覆
人工智能
GetcharZp2 小时前
爆肝整理!带你快速上手LangChain,轻松集成DeepSeek,打造自己的AI应用
人工智能·llm·deepseek
猫头虎3 小时前
新手小白如何快速检测IP 的好坏?
网络·人工智能·网络协议·tcp/ip·开源·github·php
GeeJoe3 小时前
凡人炼丹传之 · 我让 AI 帮我训练了一个 AI
人工智能·机器学习·llm
小和尚同志4 小时前
Dify29. 为你的 Dify API 穿层衣服吧
人工智能·aigc
不会学习的小白O^O4 小时前
神经网络----卷积层(Conv2D)
人工智能·深度学习·神经网络
bastgia4 小时前
Transformer终结者?Google DeepMind新架构实现2倍推理速度和一半内存占用
人工智能·llm
努力一点9484 小时前
ubuntu22.04系统入门 linux入门(二) 简单命令 多实践以及相关文件管理命令
linux·运维·服务器·人工智能·gpu算力