Spark---介绍及安装

一、Spark介绍

1、什么是Spark

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

Spark是Scala编写,方便快速编程。

2、总体技术栈讲解

3、Spark与MapReduce的区别

都是分布式计算框架,Spark基于内存,MR基于HDFS。Spark处理数据的能力一般是MR的十倍以上,Spark中除了基于内存计算外,还有DAG有向无环图来切分任务的执行先后顺序。

4、Spark运行模式

  • Local

多用于本地测试,如在eclipse,idea中写程序测试等。

  • Standalone

Standalone是Spark自带的一个资源调度框架,它支持完全分布式。

  • Yarn

Hadoop生态圈里面的一个资源调度框架,Spark也是可以基于Yarn来计算的。

  • Mesos

资源调度框架。要基于Yarn来进行资源调度,必须实现AppalicationMaster接口,Spark实现了这个接口,所以可以基于Yarn。

二、Spark基于Maven开发

1、IDEA创建Maven项目

1)创建项目

2)创建选择maven-archetype-quickstart

3)配置名称,点击下一步配置Maven及本地Maven仓库地址

4)配置名称和位置,并创建

5)更新替换Maven pom.xml文件,注意groupId,artifactId,version不要更新替换。

6)在main 目录下创建javaCode和scalaCode 并指定为源目录。名称任意。

将main下的javaCode和scalaCode指定为源目录:

相关推荐
mikey棒棒棒28 分钟前
使用RabbitMQ实现判题功能
分布式·消息队列·rabbitmq·oj
火龙谷35 分钟前
【hadoop】HBase shell 操作
大数据·hadoop·hbase
随缘而动,随遇而安37 分钟前
第五十二篇 浅谈ETL系统设计
大数据·数据仓库·数据分析·数据库开发·数据库架构
猫头虎1 小时前
浅谈国产数据库多租户方案:提升云计算与SaaS的资源管理效率
大数据·数据库·数据仓库·sql·云计算·时序数据库·kingbasees
杨超越luckly1 小时前
HTML应用指南:利用GET请求获取微博签到位置信息
大数据·信息可视化·数据分析·html·html5
早睡3352 小时前
Spark-Streaming核心编程
大数据·分布式·spark
anqi272 小时前
Spark和Hadoop之间的对比和联系
大数据·开发语言·hadoop·spark
大刘讲IT9 小时前
数据治理体系的“三驾马车”:质量、安全与价值挖掘
大数据·运维·经验分享·学习·安全·制造·零售
悻运10 小时前
Spark论述及其作用
大数据·分布式·spark