rotation matrix &reflection matrix

文章目录

  • [1. rotation matrix](#1. rotation matrix)
    • [1.1 结论](#1.1 结论)
  • [2. reflection matrix](#2. reflection matrix)
    • [2.1 结论](#2.1 结论)

1. rotation matrix

图像逆时针旋转 θ \theta θ的矩阵
Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (1) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag1 Qrotate=[cosθsinθ−sinθcosθ](1)

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (2) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag2 I=[1001](2)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量逆时针旋转 θ \theta θ角度后,可以得到此时的角度
    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (3) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag3 Q′[1,0]=[cosθsinθ](3)
    Q ′ [ 0 , 1 ] = [ − sin ⁡ θ cos ⁡ θ ] (4) Q'[0,1]=\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}\tag4 Q′[0,1]=[−sinθcosθ](4)
    所以可以得到 I I I单位向量在逆时针旋转 θ \theta θ后的旋转矩阵如下

1.1 结论

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (5) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag5 Qrotate=[cosθsinθ−sinθcosθ](5)

2. reflection matrix

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (6) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag6 Qrotate=[cosθsinθ−sinθcosθ](6)

图像沿着直线 1 2 θ \frac{1}{2}\theta 21θ对称矩阵,反射矩阵

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (7) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag7 I=[1001](7)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量关于 1 2 θ \frac{1}{2}\theta 21θ直线对称后,可以得到此时的坐标

    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (8) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag8 Q′[1,0]=[cosθsinθ](8)

    Q ′ [ 0 , 1 ] = [ sin ⁡ θ − cos ⁡ θ ] (9) Q'[0,1]=\begin{bmatrix}\sin\theta\\-\cos\theta\end{bmatrix}\tag9 Q′[0,1]=[sinθ−cosθ](9)

2.1 结论

Q r e f l e c t i o n = [ cos ⁡ θ sin ⁡ θ sin ⁡ θ − cos ⁡ θ ] (10) Q_{reflection}=\begin{bmatrix}\cos\theta&\sin\theta\\\sin\theta&-\cos\theta\end{bmatrix}\tag{10} Qreflection=[cosθsinθsinθ−cosθ](10)

相关推荐
无风听海18 小时前
神经网络之奇异值分解
神经网络·线性代数·机器学习
西西弗Sisyphus21 小时前
线性代数 - 奇异值分解(SVD Singular Value Decomposition)- 奇异值在哪里
线性代数·矩阵·奇异值分解·线程方程组
小蜜蜂爱编程1 天前
行列式的展开
线性代数
郝学胜-神的一滴1 天前
计算机图形中的法线矩阵:深入理解与应用
开发语言·程序人生·线性代数·算法·机器学习·矩阵·个人开发
西西弗Sisyphus1 天前
线性代数 - 奇异值分解(SVD Singular Value Decomposition)- 计算顺序 旋转→拉伸→旋转
线性代数·矩阵·奇异值分解·矩阵求逆
唯道行1 天前
计算机图形学·9 几何学
人工智能·线性代数·计算机视觉·矩阵·几何学·计算机图形学
粉色挖掘机1 天前
矩阵在密码学的应用——希尔密码详解
线性代数·算法·机器学习·密码学
西西弗Sisyphus2 天前
线性代数 - 正交矩阵
线性代数·矩阵·线性方程组·正交矩阵·lu分解
qiao若huan喜2 天前
7、webgl 基本概念 + 前置数学知识点(向量 + 矩阵)
线性代数·矩阵·webgl
haogexiaole2 天前
余弦相似度、矩阵分解、深度学习物品的复杂、非线性特征
深度学习·线性代数·矩阵