rotation matrix &reflection matrix

文章目录

  • [1. rotation matrix](#1. rotation matrix)
    • [1.1 结论](#1.1 结论)
  • [2. reflection matrix](#2. reflection matrix)
    • [2.1 结论](#2.1 结论)

1. rotation matrix

图像逆时针旋转 θ \theta θ的矩阵
Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (1) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag1 Qrotate=[cosθsinθ−sinθcosθ](1)

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (2) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag2 I=[1001](2)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量逆时针旋转 θ \theta θ角度后,可以得到此时的角度
    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (3) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag3 Q′[1,0]=[cosθsinθ](3)
    Q ′ [ 0 , 1 ] = [ − sin ⁡ θ cos ⁡ θ ] (4) Q'[0,1]=\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}\tag4 Q′[0,1]=[−sinθcosθ](4)
    所以可以得到 I I I单位向量在逆时针旋转 θ \theta θ后的旋转矩阵如下

1.1 结论

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (5) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag5 Qrotate=[cosθsinθ−sinθcosθ](5)

2. reflection matrix

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (6) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag6 Qrotate=[cosθsinθ−sinθcosθ](6)

图像沿着直线 1 2 θ \frac{1}{2}\theta 21θ对称矩阵,反射矩阵

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (7) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag7 I=[1001](7)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量关于 1 2 θ \frac{1}{2}\theta 21θ直线对称后,可以得到此时的坐标

    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (8) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag8 Q′[1,0]=[cosθsinθ](8)

    Q ′ [ 0 , 1 ] = [ sin ⁡ θ − cos ⁡ θ ] (9) Q'[0,1]=\begin{bmatrix}\sin\theta\\-\cos\theta\end{bmatrix}\tag9 Q′[0,1]=[sinθ−cosθ](9)

2.1 结论

Q r e f l e c t i o n = [ cos ⁡ θ sin ⁡ θ sin ⁡ θ − cos ⁡ θ ] (10) Q_{reflection}=\begin{bmatrix}\cos\theta&\sin\theta\\\sin\theta&-\cos\theta\end{bmatrix}\tag{10} Qreflection=[cosθsinθsinθ−cosθ](10)

相关推荐
君臣Andy2 天前
【矩阵的大小和方向的分解】
线性代数·矩阵
勤劳的进取家2 天前
利用矩阵函数的导数公式求解一阶常系数微分方程组的解
线性代数
sz66cm2 天前
数学基础 -- 线性代数之线性无关
人工智能·线性代数·机器学习
herobrineAC2 天前
线代的几何意义(一)——向量,坐标,矩阵
线性代数·矩阵
Ricciflows2 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
余~185381628003 天前
矩阵NFC碰一碰发视频源码开发技术解析,支持OEM
大数据·人工智能·线性代数·矩阵·音视频
羞儿3 天前
构建旋转变换矩阵对二维到高维空间的线段点进行旋转
图像处理·人工智能·线性代数·矩阵
羊羊20354 天前
线性代数:Matrix2x2和Matrix3x3
线性代数·数学建模·unity3d
WEL测试5 天前
【数学二】线性代数-矩阵-矩阵的概念及运算
线性代数·考研·矩阵·数学二
梦茹^_^5 天前
线性代数【考研准备 基于教材 期末复习亦可用】第一章行列式
笔记·线性代数·考研·行列式·lapace定理·cramer·基础定义