rotation matrix &reflection matrix

文章目录

  • [1. rotation matrix](#1. rotation matrix)
    • [1.1 结论](#1.1 结论)
  • [2. reflection matrix](#2. reflection matrix)
    • [2.1 结论](#2.1 结论)

1. rotation matrix

图像逆时针旋转 θ \theta θ的矩阵
Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (1) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag1 Qrotate=[cosθsinθ−sinθcosθ](1)

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (2) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag2 I=[1001](2)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量逆时针旋转 θ \theta θ角度后,可以得到此时的角度
    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (3) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag3 Q′[1,0]=[cosθsinθ](3)
    Q ′ [ 0 , 1 ] = [ − sin ⁡ θ cos ⁡ θ ] (4) Q'[0,1]=\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}\tag4 Q′[0,1]=[−sinθcosθ](4)
    所以可以得到 I I I单位向量在逆时针旋转 θ \theta θ后的旋转矩阵如下

1.1 结论

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (5) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag5 Qrotate=[cosθsinθ−sinθcosθ](5)

2. reflection matrix

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (6) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag6 Qrotate=[cosθsinθ−sinθcosθ](6)

图像沿着直线 1 2 θ \frac{1}{2}\theta 21θ对称矩阵,反射矩阵

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (7) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag7 I=[1001](7)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量关于 1 2 θ \frac{1}{2}\theta 21θ直线对称后,可以得到此时的坐标

    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (8) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag8 Q′[1,0]=[cosθsinθ](8)

    Q ′ [ 0 , 1 ] = [ sin ⁡ θ − cos ⁡ θ ] (9) Q'[0,1]=\begin{bmatrix}\sin\theta\\-\cos\theta\end{bmatrix}\tag9 Q′[0,1]=[sinθ−cosθ](9)

2.1 结论

Q r e f l e c t i o n = [ cos ⁡ θ sin ⁡ θ sin ⁡ θ − cos ⁡ θ ] (10) Q_{reflection}=\begin{bmatrix}\cos\theta&\sin\theta\\\sin\theta&-\cos\theta\end{bmatrix}\tag{10} Qreflection=[cosθsinθsinθ−cosθ](10)

相关推荐
张祥64228890410 小时前
线性代数本质十笔记
笔记·线性代数·机器学习
技术民工之路12 小时前
MATLAB线性方程组,运算符、inv()、pinv()全解析
线性代数·算法·matlab
a35354138213 小时前
牛顿迭代法中的雅克比矩阵几何意义
线性代数·算法
FL1717131413 小时前
黎曼几何/黎曼流形/黎曼度规/黎曼度量
线性代数
小尧嵌入式13 小时前
【Linux开发二】数字反转|除数累加|差分数组|vector插入和访问|小数四舍五入及向上取整|矩阵逆置|基础文件IO|深入文件IO
linux·服务器·开发语言·c++·线性代数·算法·矩阵
好奇龙猫14 小时前
【大学院-筆記試験練習:线性代数和数据结构(13)】
数据结构·线性代数
砚边数影1 天前
AI数学基础(一):线性代数核心,向量/矩阵运算的Java实现
java·数据库·人工智能·线性代数·矩阵·ai编程·金仓数据库
Smilecoc1 天前
求极限中等价无穷小量的替换的理解
线性代数·概率论
minglie12 天前
倒立摆模型
线性代数
sunfove2 天前
Python制作小游戏:用线性代数思想构建 2048 游戏引擎
python·线性代数·游戏引擎