rotation matrix &reflection matrix

文章目录

  • [1. rotation matrix](#1. rotation matrix)
    • [1.1 结论](#1.1 结论)
  • [2. reflection matrix](#2. reflection matrix)
    • [2.1 结论](#2.1 结论)

1. rotation matrix

图像逆时针旋转 θ \theta θ的矩阵
Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (1) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag1 Qrotate=[cosθsinθ−sinθcosθ](1)

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (2) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag2 I=[1001](2)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量逆时针旋转 θ \theta θ角度后,可以得到此时的角度
    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (3) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag3 Q′[1,0]=[cosθsinθ](3)
    Q ′ [ 0 , 1 ] = [ − sin ⁡ θ cos ⁡ θ ] (4) Q'[0,1]=\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}\tag4 Q′[0,1]=[−sinθcosθ](4)
    所以可以得到 I I I单位向量在逆时针旋转 θ \theta θ后的旋转矩阵如下

1.1 结论

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (5) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag5 Qrotate=[cosθsinθ−sinθcosθ](5)

2. reflection matrix

Q r o t a t e = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] (6) Q_{rotate}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\tag6 Qrotate=[cosθsinθ−sinθcosθ](6)

图像沿着直线 1 2 θ \frac{1}{2}\theta 21θ对称矩阵,反射矩阵

  • 为了方便计算和表达,我们用 I I I单位矩阵进行分析
    I = [ 1 0 0 1 ] (7) I=\begin{bmatrix}1&0\\0&1\end{bmatrix}\tag7 I=[1001](7)
    可以得到两个点 Q=(1 , 0);Q=( 0, 1),我们将两个向量关于 1 2 θ \frac{1}{2}\theta 21θ直线对称后,可以得到此时的坐标

    Q ′ [ 1 , 0 ] = [ cos ⁡ θ sin ⁡ θ ] (8) Q'[1,0]=\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}\tag8 Q′[1,0]=[cosθsinθ](8)

    Q ′ [ 0 , 1 ] = [ sin ⁡ θ − cos ⁡ θ ] (9) Q'[0,1]=\begin{bmatrix}\sin\theta\\-\cos\theta\end{bmatrix}\tag9 Q′[0,1]=[sinθ−cosθ](9)

2.1 结论

Q r e f l e c t i o n = [ cos ⁡ θ sin ⁡ θ sin ⁡ θ − cos ⁡ θ ] (10) Q_{reflection}=\begin{bmatrix}\cos\theta&\sin\theta\\\sin\theta&-\cos\theta\end{bmatrix}\tag{10} Qreflection=[cosθsinθsinθ−cosθ](10)

相关推荐
云云32121 小时前
云手机能用来干什么?云手机在跨境电商领域的用途
服务器·线性代数·安全·智能手机·矩阵
云云32121 小时前
云手机方案总结
服务器·线性代数·安全·智能手机·矩阵
AI小白白猫1 天前
20241230 基础数学-线性代数-(1)求解特征值(numpy, scipy)
线性代数·numpy·scipy
大山同学2 天前
第三章线性判别函数(二)
线性代数·算法·机器学习
云云3212 天前
搭建云手机平台的技术要求?
服务器·线性代数·安全·智能手机·矩阵
云云3212 天前
云手机有哪些用途?云手机选择推荐
服务器·线性代数·安全·智能手机·矩阵
十年一梦实验室2 天前
【C++】sophus : sim_details.hpp 实现了矩阵函数 W、其导数,以及其逆 (十七)
开发语言·c++·线性代数·矩阵
阿正的梦工坊2 天前
范德蒙矩阵(Vandermonde 矩阵)简介:意义、用途及编程应用
线性代数·矩阵
哲学之窗2 天前
齐次矩阵包含平移和旋转
线性代数·算法·矩阵
原装穿山乙思密达2 天前
如何利用矩阵化简平面上的二次型曲线
线性代数·矩阵·高等代数·解析几何