opencv- CLAHE 有限对比适应性直方图均衡化

CLAHE(Contrast Limited Adaptive Histogram Equalization)是一种对比度有限的自适应直方图均衡化技术,它能够提高图像的对比度而又避免过度增强噪声。

在OpenCV中,cv2.createCLAHE() 函数用于创建CLAHE对象,然后可以使用该对象的 apply() 方法来对图像进行CLAHE均衡化,它在局部区域内对图像进行直方图均衡化,从而提高图像对比度而避免噪声过度增强。

函数的基本语法如下:

python 复制代码
clahe = cv2.createCLAHE(clipLimit, tileGridSize)

参数说明:

  • clipLimit: 对比度限制。对比度超过该值的像素将被截断,以防止过度增强对比度,默认为 40.0
  • tileGridSize: 图像被分割为多个小块(tiles),每个小块内进行局部直方图均衡化。tileGridSize 定义了每个小块的大小,默认为 (8, 8)。

创建CLAHE对象后,可以使用该对象的 apply() 方法对图像进行CLAHE均衡化。

示例代码:

python 复制代码
import cv2import matplotlib.pyplot as plt

# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\2.jpg", cv2.IMREAD_GRAYSCALE)
# 创建CLAHE对象
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
# 进行CLAHE均衡化
clahe_img = clahe.apply(img)
# 绘制原始图像和CLAHE均衡化后的图像
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.imshow(img, cmap='gray')
plt.title('Original Image')
plt.subplot(1, 2, 2)
plt.imshow(clahe_img, cmap='gray')
plt.title('CLAHE Image')
plt.show()
# 显示原始图像和CLAHE均衡化后的图像
cv2.imshow('Original Image', img)
cv2.imshow('CLAHE Image', clahe_img)

# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()


在这个示例中,通过调整 clipLimittileGridSize 参数,你可以控制CLAHE的效果。CLAHE通常在需要提高图像对比度的情况下使用,特别是在局部对比度不均匀的图像上。

CLAHE在局部区域内进行直方图均衡化,这有助于避免在全局均衡化中出现的过度增强噪声的问题。

相关推荐
爱吃泡芙的小白白19 小时前
CNN的FLOPs:从理论计算到实战避坑指南
人工智能·神经网络·cnn·flops
山居秋暝LS19 小时前
Padim模型参数
人工智能·机器学习
藦卡机器人19 小时前
国产分拣机器人品牌有哪一些做的比较好的推荐?
人工智能
GJGCY19 小时前
2026主流智能体平台技术路线差异,各大平台稳定性与集成能力对比
人工智能·经验分享·ai·智能体
橙露19 小时前
视觉检测中的数字光纤放大器的核心参数和调整
人工智能·计算机视觉·视觉检测
Rorsion20 小时前
机器学习过程(从机器学习到深度学习)
人工智能·深度学习·机器学习
JicasdC123asd20 小时前
【工业检测】基于YOLO13-C3k2-EIEM的铸造缺陷检测与分类系统_1
人工智能·算法·分类
咚咚王者20 小时前
人工智能之核心技术 深度学习 第十章 模型部署基础
人工智能·深度学习
ydl112820 小时前
深度学习优化器详解:指数加权平均EWA、动量梯度下降Momentum、均方根传递RMSprop、Adam 从原理到实操
人工智能·深度学习
幂链iPaaS20 小时前
市场六大专业iPaaS平台怎么选
大数据·人工智能