opencv- CLAHE 有限对比适应性直方图均衡化

CLAHE(Contrast Limited Adaptive Histogram Equalization)是一种对比度有限的自适应直方图均衡化技术,它能够提高图像的对比度而又避免过度增强噪声。

在OpenCV中,cv2.createCLAHE() 函数用于创建CLAHE对象,然后可以使用该对象的 apply() 方法来对图像进行CLAHE均衡化,它在局部区域内对图像进行直方图均衡化,从而提高图像对比度而避免噪声过度增强。

函数的基本语法如下:

python 复制代码
clahe = cv2.createCLAHE(clipLimit, tileGridSize)

参数说明:

  • clipLimit: 对比度限制。对比度超过该值的像素将被截断,以防止过度增强对比度,默认为 40.0
  • tileGridSize: 图像被分割为多个小块(tiles),每个小块内进行局部直方图均衡化。tileGridSize 定义了每个小块的大小,默认为 (8, 8)。

创建CLAHE对象后,可以使用该对象的 apply() 方法对图像进行CLAHE均衡化。

示例代码:

python 复制代码
import cv2import matplotlib.pyplot as plt

# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\2.jpg", cv2.IMREAD_GRAYSCALE)
# 创建CLAHE对象
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
# 进行CLAHE均衡化
clahe_img = clahe.apply(img)
# 绘制原始图像和CLAHE均衡化后的图像
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.imshow(img, cmap='gray')
plt.title('Original Image')
plt.subplot(1, 2, 2)
plt.imshow(clahe_img, cmap='gray')
plt.title('CLAHE Image')
plt.show()
# 显示原始图像和CLAHE均衡化后的图像
cv2.imshow('Original Image', img)
cv2.imshow('CLAHE Image', clahe_img)

# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()


在这个示例中,通过调整 clipLimittileGridSize 参数,你可以控制CLAHE的效果。CLAHE通常在需要提高图像对比度的情况下使用,特别是在局部对比度不均匀的图像上。

CLAHE在局部区域内进行直方图均衡化,这有助于避免在全局均衡化中出现的过度增强噪声的问题。

相关推荐
鹿导的通天塔3 分钟前
这个SVG可视化编辑器,我愿称之为最强
人工智能
春末的南方城市5 分钟前
阿里发布新开源视频生成模型Wan-Video,支持文生图和图生图,最低6G就能跑,ComFyUI可用!
人工智能·计算机视觉·自然语言处理·开源·aigc·音视频
yc_237 分钟前
人体骨架识别文献阅读——ST-TR:基于时空Transformer网络的骨架动作识别
人工智能
说私域24 分钟前
基于定制开发开源AI智能名片S2B2C商城小程序的零售运营策略研究
人工智能·小程序·开源·零售
Constancy28 分钟前
DeepSeek 本地部署及使用
人工智能
qq_273900231 小时前
AF3 squeeze_features函数解读
人工智能·pytorch·深度学习·生物信息学
fanxiaohui121381 小时前
元脑服务器的创新应用:浪潮信息引领AI计算新时代
运维·服务器·人工智能
新智元1 小时前
哥大本科生靠 AI 横扫硅谷大厂 offer,学校震怒!预言码农两年内淘汰准备退学
人工智能·面试
新智元1 小时前
1 次搭建完胜 1 亿次编码,MCP 硅谷疯传!Anthropic 协议解锁智能体「万能手」
人工智能·openai
程序员~小强1 小时前
让知识触手可及!基于Neo4j的机械设备知识图谱问答系统
人工智能·python·django·知识图谱·neo4j