SparkSession介绍

一、 介绍

  1. SparkSession是Spark 2.0中引入的新概念,它是Spark SQL、DataFrame和Dataset API的入口点,是Spark编程的统一API,也可看作是读取数据的统一入口;
  2. 它将以前的SparkContext、SQLContext和HiveContext组合在一起,使得用户可以在一个统一的接口下使用Spark的所有功能。
  3. 需要注意的是,SparkSession是一个重量级的对象,创建和销毁的代价较高,因此在项目中应该尽可能地重用同一个SparkSession对象。
  4. 在I/O期间,在构建器中设置的配置项将自动同步到Spark和Hadoop。

二、如何使用

复制代码
# 在项目中初始化SparkSession,可以按照以下步骤进行:
# 1、导入必要的包:
import org.apache.spark.sql.SparkSession
# 2、创建SparkSession对象:
val spark = SparkSession
      .builder  # 使用builder()方法创建一个SparkSession.Builder对象,构建器将自动重用现有的SparkSession;如果不存在则会创建一个SparkSession
      .appName("xxx")
      .config("hive.exec.dynamic.partition", "true")  # 设置分区
      .config("hive.exec.dynamic.partition.mode", "nonstrict") # 设置hive是动态写入的方式
      .config("spark.sql.broadcastTimeout", 3000)
      .config("spark.sql.sources.partitionOverwriteMode", "dynamic")  # 设置hive动态写分区
      .config("spark.checkpoint.dir", "/user/vc/projects_prod/checkpoint/data")  # 设置checkpoint的路径
      .enableHiveSupport()
      .getOrCreate()

# 3、使用SparkSession对象进行数据操作:
val df = spark.read.json("path/to/json/file")
df.show()

三、sparkSession的配置参数参考

https://blog.csdn.net/u010569893/article/details/111356664

相关推荐
小湘西5 小时前
在 Hive 中NULL的理解
数据仓库·hive·hadoop
牛奶咖啡136 小时前
zabbix实现监控Hadoop、Docker、SSL证书过期时间应用的保姆级实操流程
hadoop·zabbix·docker-ce引擎安装·监控docker容器·监控ssl证书的过期时间·监控hadoop·安装配置agent2
Hello.Reader9 小时前
Spark RDD 编程从驱动程序到共享变量、Shuffle 与持久化
大数据·分布式·spark
小鹿学程序12 小时前
搭建hadoop集群
大数据·hadoop·分布式
John Song15 小时前
用zookpeer搭建Hadoop的HA集群,组件启动的启动顺序是什么?
大数据·hadoop·debian
梦里不知身是客111 天前
sparkSQL读取数据的方式
spark
少废话h1 天前
Spark 中数据读取方式详解:SparkSQL(DataFrame)与 SparkCore(RDD)方法对比及实践
大数据·sql·spark
大千AI助手2 天前
分布式奇异值分解(SVD)详解
人工智能·分布式·spark·奇异值分解·svd·矩阵分解·分布式svd
Hello.Reader2 天前
用 Spark Shell 做交互式数据分析从入门到自包含应用
大数据·数据分析·spark
qq_12498707532 天前
基于hadoop的电商用户行为分析系统(源码+论文+部署+安装)
大数据·hadoop·分布式·毕业设计