pandas增加列的七种方法

insert

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                             'B': ['B0', 'B1', 'B2']},
                            index=[1.0, 2.0, 3.0])

    df.insert(0, 'A1', ['A00', 'A01', 'A02'])
    print(df)
python 复制代码
      A   B
1.0  A0  B0
2.0  A1  B1
3.0  A2  B2
      A0   A   B
1.0  A00  A0  B0
2.0  A01  A1  B1
3.0  A02  A2  B2

赋值

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                             'B': ['B0', 'B1', 'B2']},
                            index=[1.0, 2.0, 3.0])

    print(df)
    df["C"] = ['C0', 'C1', 'C2']
    print(df)

python 复制代码
df['C'] = df['A'].str.replace("A", "C")
df['C'] = df['A'].map(lambda x: x.replace('A', 'C'))
python 复制代码
      A   B
1.0  A0  B0
2.0  A1  B1
3.0  A2  B2
      A   B   C
1.0  A0  B0  C0
2.0  A1  B1  C1
3.0  A2  B2  C2

loc

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                             'B': ['B0', 'B1', 'B2']},
                            index=[1.0, 2.0, 3.0])

    print(df)
    df.loc[:, "C"] = ['C0', 'C1', 'C2']
    print(df)
python 复制代码
      A   B
1.0  A0  B0
2.0  A1  B1
3.0  A2  B2
      A   B   C
1.0  A0  B0  C0
2.0  A1  B1  C1
3.0  A2  B2  C2

类似上面的。

concat

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                           'B': ['B0', 'B1', 'B2']},
                          index=[1.0, 2.0, 3.0])
    df1 = pandas.Series(['C0', 'C1', 'C2'], index=[1.0, 2.0, 3.0])

    print(df)
    df = pandas.concat([df, df1], axis=1)
    print(df)

apply、map

map

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                           'B': ['B0', 'B1', 'B2']},
                          index=[1.0, 2.0, 3.0])
    print(df)
    df['C'] = df['A'].map(lambda x: x.replace('A', 'C'))
    print(df)

结果

python 复制代码
      A   B
1.0  A0  B0
2.0  A1  B1
3.0  A2  B2
      A   B   C
1.0  A0  B0  C0
2.0  A1  B1  C1
3.0  A2  B2  C2

apply

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                           'B': ['B0', 'B1', 'B2']},
                          index=[1.0, 2.0, 3.0])
    print(df)
    df['C'] = df.apply(lambda x, s1, s2: x[s1]+x[s2], args=('A', 'B'), axis=1)
    print(df)
python 复制代码
      A   B
1.0  A0  B0
2.0  A1  B1
3.0  A2  B2
      A   B     C
1.0  A0  B0  A0B0
2.0  A1  B1  A1B1
3.0  A2  B2  A2B2

reindex

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                           'B': ['B0', 'B1', 'B2']},
                          index=[1.0, 2.0, 3.0])

    print(df)
    df = df.reindex(columns=df.columns.tolist()+['C'], fill_value=1)
    print(df)
python 复制代码
      A   B
1.0  A0  B0
2.0  A1  B1
3.0  A2  B2
      A   B  C
1.0  A0  B0  1
2.0  A1  B1  1
3.0  A2  B2  1

assign

python 复制代码
def test1():
    df = pandas.DataFrame({'A': ['A0', 'A1', 'A2'],
                           'B': ['B0', 'B1', 'B2']},
                          index=[1.0, 2.0, 3.0])
    print(df)
    df = df.assign(C=df["A"]+df['B'], D=df["B"]+df['A'])
    print(df)

结果:

python 复制代码
      A   B
1.0  A0  B0
2.0  A1  B1
3.0  A2  B2
      A   B     C     D
1.0  A0  B0  A0B0  B0A0
2.0  A1  B1  A1B1  B1A1
3.0  A2  B2  A2B2  B2A2

参考

https://blog.csdn.net/lzjhyhf/article/details/129205949

相关推荐
小白学大数据2 天前
Python爬虫实现无限滚动页面的自动点击与内容抓取
开发语言·爬虫·python·pandas
LilySesy4 天前
【SAP-MOM项目】二、接口对接(中)
开发语言·python·pandas·restful·sap·abap
qq_381454999 天前
Python Pandas完全指南:从核心数据结构到实战操作
pandas
TUTO_TUTO10 天前
【python-词汇指标提取工具开发】自学笔记(1)-后端程序
人工智能·python·pandas·visual studio code
葱明撅腚10 天前
shapely空间数据分析
python·pandas·gis·shapely
忘忧记11 天前
pandas基础三
pandas
叫我:松哥13 天前
基于scrapy的网易云音乐数据采集与分析设计实现
python·信息可视化·数据分析·beautifulsoup·numpy·pandas
测试摆渡媛13 天前
Excel模板填充工具(工具&脚本分享)
python·数据挖掘·pandas
_Soy_Milk13 天前
【算法工程师】—— Python 数据分析
python·数据分析·numpy·pandas·matplotlib
Data-Miner14 天前
类似Pandas AI的几个数据分析处理智能体介绍
人工智能·数据分析·pandas