opencv-图像梯度

目标

• 图像梯度,图像边界等

• 使用到的函数有:cv2.Sobel(),cv2.Schar(),cv2.Laplacian() 等
原理
梯度简单来说就是求导。

OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr 和 Laplacian。我们会意义介绍他们。

Sobel,Scharr 其实就是求一阶或二阶导数。Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化。Laplacian 是求二阶导数。

1.Sobel 算子和 Scharr 算子

Sobel 算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很好。 你可以设定求导的方向(xorder 或

yorder)。还可以设定使用的卷积核的大 小(ksize)。

python 复制代码
import cv2
import numpy as np
# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg", cv2.IMREAD_GRAYSCALE)
# 计算水平方向的Sobel梯度
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
# 计算垂直方向的Sobel梯度
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
# 显示原始图像和Sobel梯度图像
cv2.imshow('Original Image', img)
cv2.imshow('Sobel X', sobelx)
cv2.imshow('Sobel Y', sobely)
# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()

图像梯度是图像中灰度变化的一种度量,通常用于检测图像中的边缘或者区域的变化。在图像处理中,常用的梯度计算方法包括Sobel、Scharr、Laplacian等。

Sobel算子:

Sobel算子是一种常用的梯度计算方法,分为水平和垂直两个方向。在OpenCV中,cv2.Sobel() 函数用于计算图像的Sobel梯度。

基本语法如下:

python 复制代码
sobelx = cv2.Sobel(src, ddepth, dx, dy, ksize[, dst[, scale[, delta[, borderType]]]])
  • src: 输入图像。
  • ddepth: 输出图像的深度,通常使用 -1 表示与输入图像相同。
  • dxdy: 分别表示水平和垂直方向的梯度阶数。
  • ksize: Sobel核的大小,通常为1、3、5等奇数。
  • dst(可选): 输出图像。
  • scale(可选): 缩放因子,通常为1。
  • delta(可选): 一个可选的增量,将被加到输出。
  • borderType(可选): 边界处理的方式,通常为默认值 cv2.BORDER_DEFAULT
  1. Laplacian算子:

Laplacian算子用于计算图像的二阶导数,从而得到图像的梯度。在OpenCV中,cv2.Laplacian() 函数用于计算Laplacian梯度。

基本语法如下:

python 复制代码
laplacian = cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])

参数说明与Sobel类似,其中 ksize 表示Laplacian核的大小。

python 复制代码
import cv2
import numpy as np
# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg", cv2.IMREAD_GRAYSCALE)
# 计算Laplacian梯度
laplacian = cv2.Laplacian(img, cv2.CV_64F)

# 显示原始图像和Laplacian梯度图像
cv2.imshow('Original Image', img)
cv2.imshow('Laplacian', laplacian)

# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()

这些梯度计算方法可以帮助检测图像中的边缘和区域变化,对于后续的图像分析和处理非常有用。

相关推荐
zhongqu_3dnest14 分钟前
众趣SDK重磅升级:空间物联IOT新视界,赋能实景三维场景深度应用
人工智能·物联网·计算机视觉·3d·点云处理·点云扫描
zskj_zhyl1 小时前
从 “洗澡难” 到 “洗得爽”:便携智能洗浴机如何重塑生活?
大数据·人工智能·科技·生活
Danceful_YJ4 小时前
15.手动实现BatchNorm(BN)
人工智能·深度学习·神经网络·batchnorm
wh_xia_jun4 小时前
医疗数据分析中标准化的作用
人工智能·机器学习
jndingxin5 小时前
OpenCV直线段检测算法类cv::line_descriptor::LSDDetector
人工智能·opencv·算法
胖达不服输5 小时前
「日拱一码」027 深度学习库——PyTorch Geometric(PyG)
人工智能·pytorch·深度学习·pyg·深度学习库
deephub5 小时前
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
人工智能·深度学习·神经网络·贝叶斯概率·状态空间
壹立科技6 小时前
壹脉销客AI电子名片源码核心架构
人工智能·架构·电子名片
YUQI的博客6 小时前
小白入门:通过手搓神经网络理解深度学习
人工智能·深度学习·神经网络
笑小枫6 小时前
Pytorch使用GPU训练全过程,包含安装CUDA、cuDNN、PyTorch
人工智能·pytorch·python