opencv-图像梯度

目标

• 图像梯度,图像边界等

• 使用到的函数有:cv2.Sobel(),cv2.Schar(),cv2.Laplacian() 等
原理
梯度简单来说就是求导。

OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr 和 Laplacian。我们会意义介绍他们。

Sobel,Scharr 其实就是求一阶或二阶导数。Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化。Laplacian 是求二阶导数。

1.Sobel 算子和 Scharr 算子

Sobel 算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很好。 你可以设定求导的方向(xorder 或

yorder)。还可以设定使用的卷积核的大 小(ksize)。

python 复制代码
import cv2
import numpy as np
# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg", cv2.IMREAD_GRAYSCALE)
# 计算水平方向的Sobel梯度
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
# 计算垂直方向的Sobel梯度
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
# 显示原始图像和Sobel梯度图像
cv2.imshow('Original Image', img)
cv2.imshow('Sobel X', sobelx)
cv2.imshow('Sobel Y', sobely)
# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()

图像梯度是图像中灰度变化的一种度量,通常用于检测图像中的边缘或者区域的变化。在图像处理中,常用的梯度计算方法包括Sobel、Scharr、Laplacian等。

Sobel算子:

Sobel算子是一种常用的梯度计算方法,分为水平和垂直两个方向。在OpenCV中,cv2.Sobel() 函数用于计算图像的Sobel梯度。

基本语法如下:

python 复制代码
sobelx = cv2.Sobel(src, ddepth, dx, dy, ksize[, dst[, scale[, delta[, borderType]]]])
  • src: 输入图像。
  • ddepth: 输出图像的深度,通常使用 -1 表示与输入图像相同。
  • dxdy: 分别表示水平和垂直方向的梯度阶数。
  • ksize: Sobel核的大小,通常为1、3、5等奇数。
  • dst(可选): 输出图像。
  • scale(可选): 缩放因子,通常为1。
  • delta(可选): 一个可选的增量,将被加到输出。
  • borderType(可选): 边界处理的方式,通常为默认值 cv2.BORDER_DEFAULT
  1. Laplacian算子:

Laplacian算子用于计算图像的二阶导数,从而得到图像的梯度。在OpenCV中,cv2.Laplacian() 函数用于计算Laplacian梯度。

基本语法如下:

python 复制代码
laplacian = cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])

参数说明与Sobel类似,其中 ksize 表示Laplacian核的大小。

python 复制代码
import cv2
import numpy as np
# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\images.jpg", cv2.IMREAD_GRAYSCALE)
# 计算Laplacian梯度
laplacian = cv2.Laplacian(img, cv2.CV_64F)

# 显示原始图像和Laplacian梯度图像
cv2.imshow('Original Image', img)
cv2.imshow('Laplacian', laplacian)

# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()

这些梯度计算方法可以帮助检测图像中的边缘和区域变化,对于后续的图像分析和处理非常有用。

相关推荐
七月shi人8 分钟前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风27 分钟前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
itwangyang52038 分钟前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能
蓝桉~MLGT44 分钟前
Ai-Agent学习历程—— 阶段1——环境的选择、Pydantic基座、Jupyter Notebook的使用
人工智能·学习·jupyter
油泼辣子多加1 小时前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
数据皮皮侠1 小时前
2m气温数据集(1940-2024)
大数据·数据库·人工智能·制造·微信开放平台
lzhdim1 小时前
魅族手机介绍
人工智能·智能手机
Debroon1 小时前
现代医疗中的AI智能体
人工智能
Winner13001 小时前
查看rk3566摄像头设备、能力、支持格式
linux·网络·人工智能
shizhenshide2 小时前
“绕过”与“破解”的成本账:自行研发、购买API与外包打码的性价比全分析
人工智能·验证码·recaptcha·ezcaptcha·recaptcha v2