深度学习八股文:混合精度训练过程出nan怎么办

其实如果是FP32的训练,基本的调试方法还是差不多,这里就讲一下混合精度训练过程中的nan。

混合精度训练使用较低的数值精度(通常是半精度浮点数,例如FP16)来加速模型训练,但在一些情况下,可能会引发数值不稳定性的问题,导致 NaN 的出现。处理混合精度训练中的 NaN 问题时,可以考虑以下步骤:

数值检查: 在训练过程中,定期检查模型参数、梯度等是否包含 NaN 或 Inf(无穷大)值。你可以在训练循环中添加断言语句,及时发现异常值

assert not torch.isnan(model.parameters()).any(), "Model parameters contain NaN!"

梯度缩放(Gradient Scaling): 在混合精度训练中,通常会使用梯度缩放来抵消使用较低精度带来的梯度范围减小的问题。你可以尝试调整梯度缩放的比例。

scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

注意,相比与前向出nan,混合精度训练会多一个梯度缩放的过程,这个是前向没有出nan的前提下实现的,影响的梯度更新:

前向计算过程中没有nan,loss算完后,乘以scale后导致inf,这时候再往后反向传播出nan了,那在梯度更新的时候就会在梯度更新前进行数值检查,check finite and unscale过程会去检查权重的梯度发现有nan或者inf就会跳过更新,此时就可以调整scale的值,把scale降低,然后跑下一个step的前向。如果scale调整后,乘以loss,没有inf,就调成功了,继续正常更新参数,如果还是inf就得继续调小scale

相关推荐
@心都19 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫21 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
kcarly2 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
Jackilina_Stone2 小时前
【论文阅读笔记】浅谈深度学习中的知识蒸馏 | 关系知识蒸馏 | CVPR 2019 | RKD
论文阅读·深度学习·蒸馏·rkd
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
MinIO官方账号3 小时前
使用 AIStor 和 OpenSearch 增强搜索功能
人工智能
江江江江江江江江江4 小时前
深度神经网络终极指南:从数学本质到工业级实现(附Keras版本代码)
人工智能·keras·dnn
Fansv5874 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑4 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python
Erekys5 小时前
视觉分析之边缘检测算法
人工智能·计算机视觉·音视频