深度学习八股文:混合精度训练过程出nan怎么办

其实如果是FP32的训练,基本的调试方法还是差不多,这里就讲一下混合精度训练过程中的nan。

混合精度训练使用较低的数值精度(通常是半精度浮点数,例如FP16)来加速模型训练,但在一些情况下,可能会引发数值不稳定性的问题,导致 NaN 的出现。处理混合精度训练中的 NaN 问题时,可以考虑以下步骤:

数值检查: 在训练过程中,定期检查模型参数、梯度等是否包含 NaN 或 Inf(无穷大)值。你可以在训练循环中添加断言语句,及时发现异常值

复制代码
assert not torch.isnan(model.parameters()).any(), "Model parameters contain NaN!"

梯度缩放(Gradient Scaling): 在混合精度训练中,通常会使用梯度缩放来抵消使用较低精度带来的梯度范围减小的问题。你可以尝试调整梯度缩放的比例。

复制代码
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

注意,相比与前向出nan,混合精度训练会多一个梯度缩放的过程,这个是前向没有出nan的前提下实现的,影响的梯度更新:

前向计算过程中没有nan,loss算完后,乘以scale后导致inf,这时候再往后反向传播出nan了,那在梯度更新的时候就会在梯度更新前进行数值检查,check finite and unscale过程会去检查权重的梯度发现有nan或者inf就会跳过更新,此时就可以调整scale的值,把scale降低,然后跑下一个step的前向。如果scale调整后,乘以loss,没有inf,就调成功了,继续正常更新参数,如果还是inf就得继续调小scale

相关推荐
lucky_lyovo5 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn9 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy13 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道37 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域39 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶40 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域40 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜42 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
摘星编程1 小时前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱1 小时前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能