PPO算法与DDPG算法的比较

一、PPO算法

1. actor网络

Actor 网络输出在给定状态 s t s_t st下采取每个动作的概率分布,通常使用一个神经网络表示: [ π θ ( a t ∣ s t ) ] [ \pi_\theta(a_t | s_t) ] [πθ(at∣st)].PPO 迭代地更新这个 policy,以改进策略并提高性能。

2. Critic网络

V ϕ ( s t ) \] \[ V_\\phi(s_t) \] \[Vϕ(st)\]用于估计状态的值函数。Critic 网络的目标是学习一个准确估计的状态值函数,以便计算优势函数(Advantage Function)。这个 value 网络帮助计算 advantage(优势),即在某个状态下执行某个动作相对于平均水平的优越性。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727994170762596354/7ecb84aa5ae0ec74af9a0bfa386c0d62.webp) ## 二、DDPG算法 ### 1. actor网络 DDPG 使用一个 actor 网络 \[ μ θ ( s t ) \] \[ \\mu_\\theta(s_t) \] \[μθ(st)\],其输出是在给定状态下采取的动作。与 PPO 不同,DDPG 的输出是连续的动作,而不是动作概率分布。 ### 2. Critic网络 DDPG 有一个 critic 网络 \[ Q ϕ ( s t , a t ) \] \[ Q_\\phi(s_t, a_t) \] \[Qϕ(st,at)\],用于估计在给定状态和动作下的 Q 值(动作的质量)。这个 Q 值用于计算 policy gradient,以更新 actor 网络。 Critic 网络的训练目标是最小化 Q 值的均方误差,以使其能够准确估计累积奖励。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727994170762596354/be80119ae0178a41d79c1bfbf7a8109b.webp) ## 三、比较 * 更新目标:PPO 通过**迭代更新 policy 来提高性能** ,而 DDPG 则使用 **critic 网络的 Q 值来计算 policy gradient**,并更新 actor 网络。

相关推荐
JHC000000几秒前
118. 杨辉三角
python·算法·面试
@游子5 分钟前
Python类属性与魔术方法全解析
开发语言·python
WolfGang00732115 分钟前
代码随想录算法训练营Day50 | 拓扑排序、dijkstra(朴素版)
数据结构·算法
业精于勤的牙29 分钟前
浅谈:算法中的斐波那契数(四)
算法
一直都在57232 分钟前
数据结构入门:二叉排序树的删除算法
数据结构·算法
白云千载尽35 分钟前
ego_planner算法的仿真环境(主要是ros)-算法的解耦实现.
算法·无人机·规划算法·后端优化·ego·ego_planner
眠りたいです1 小时前
现代C++:C++11并发支持库
开发语言·c++·多线程·c++11·c++并发支持库
小灰灰搞电子1 小时前
Rust可以取代C++么?
开发语言·c++·rust
Swizard1 小时前
别再只会算直线距离了!用“马氏距离”揪出那个伪装的数据“卧底”
python·算法·ai
cat三三1 小时前
java之异常
java·开发语言