PPO算法与DDPG算法的比较

一、PPO算法

1. actor网络

Actor 网络输出在给定状态 s t s_t st下采取每个动作的概率分布,通常使用一个神经网络表示: [ π θ ( a t ∣ s t ) ] [ \pi_\theta(a_t | s_t) ] [πθ(at∣st)].PPO 迭代地更新这个 policy,以改进策略并提高性能。

2. Critic网络

V ϕ ( s t ) \] \[ V_\\phi(s_t) \] \[Vϕ(st)\]用于估计状态的值函数。Critic 网络的目标是学习一个准确估计的状态值函数,以便计算优势函数(Advantage Function)。这个 value 网络帮助计算 advantage(优势),即在某个状态下执行某个动作相对于平均水平的优越性。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727994170762596354/7ecb84aa5ae0ec74af9a0bfa386c0d62.webp) ## 二、DDPG算法 ### 1. actor网络 DDPG 使用一个 actor 网络 \[ μ θ ( s t ) \] \[ \\mu_\\theta(s_t) \] \[μθ(st)\],其输出是在给定状态下采取的动作。与 PPO 不同,DDPG 的输出是连续的动作,而不是动作概率分布。 ### 2. Critic网络 DDPG 有一个 critic 网络 \[ Q ϕ ( s t , a t ) \] \[ Q_\\phi(s_t, a_t) \] \[Qϕ(st,at)\],用于估计在给定状态和动作下的 Q 值(动作的质量)。这个 Q 值用于计算 policy gradient,以更新 actor 网络。 Critic 网络的训练目标是最小化 Q 值的均方误差,以使其能够准确估计累积奖励。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727994170762596354/be80119ae0178a41d79c1bfbf7a8109b.webp) ## 三、比较 * 更新目标:PPO 通过**迭代更新 policy 来提高性能** ,而 DDPG 则使用 **critic 网络的 Q 值来计算 policy gradient**,并更新 actor 网络。

相关推荐
学习2年半24 分钟前
小米笔试题:一元一次方程求解
算法
MATLAB代码顾问28 分钟前
MATLAB绘制多种混沌系统
人工智能·算法·matlab
极客BIM工作室1 小时前
演化搜索与群集智能:五种经典算法探秘
人工智能·算法·机器学习
wjs20241 小时前
SQL AND & OR 操作符详解
开发语言
qq_574656251 小时前
java-代码随想录第66天|Floyd 算法、A * 算法精讲 (A star算法)
java·算法·leetcode·图论
~光~~1 小时前
【环境配置 】WSL2 +ubuntu20.04 +Qt配置+Kits配置
开发语言·qt·ubuntu
·心猿意码·2 小时前
C++右值语义解析
开发语言·c++
小龙报2 小时前
《彻底理解C语言指针全攻略(2)》
c语言·开发语言·c++·visualstudio·github·学习方法
金融街小单纯2 小时前
从蓝军建设中学习颠覆性质疑思维
人工智能·算法·机器学习
zzzsde2 小时前
【c++】深入理解string类(4)
开发语言·c++