PPO算法与DDPG算法的比较

一、PPO算法

1. actor网络

Actor 网络输出在给定状态 s t s_t st下采取每个动作的概率分布,通常使用一个神经网络表示: [ π θ ( a t ∣ s t ) ] [ \pi_\theta(a_t | s_t) ] [πθ(at∣st)].PPO 迭代地更新这个 policy,以改进策略并提高性能。

2. Critic网络

V ϕ ( s t ) \] \[ V_\\phi(s_t) \] \[Vϕ(st)\]用于估计状态的值函数。Critic 网络的目标是学习一个准确估计的状态值函数,以便计算优势函数(Advantage Function)。这个 value 网络帮助计算 advantage(优势),即在某个状态下执行某个动作相对于平均水平的优越性。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727994170762596354/7ecb84aa5ae0ec74af9a0bfa386c0d62.webp) ## 二、DDPG算法 ### 1. actor网络 DDPG 使用一个 actor 网络 \[ μ θ ( s t ) \] \[ \\mu_\\theta(s_t) \] \[μθ(st)\],其输出是在给定状态下采取的动作。与 PPO 不同,DDPG 的输出是连续的动作,而不是动作概率分布。 ### 2. Critic网络 DDPG 有一个 critic 网络 \[ Q ϕ ( s t , a t ) \] \[ Q_\\phi(s_t, a_t) \] \[Qϕ(st,at)\],用于估计在给定状态和动作下的 Q 值(动作的质量)。这个 Q 值用于计算 policy gradient,以更新 actor 网络。 Critic 网络的训练目标是最小化 Q 值的均方误差,以使其能够准确估计累积奖励。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727994170762596354/be80119ae0178a41d79c1bfbf7a8109b.webp) ## 三、比较 * 更新目标:PPO 通过**迭代更新 policy 来提高性能** ,而 DDPG 则使用 **critic 网络的 Q 值来计算 policy gradient**,并更新 actor 网络。

相关推荐
开发者工具分享17 分钟前
如何应对敏捷转型中的团队阻力
开发语言
gregmankiw23 分钟前
C#调用Rust动态链接库DLL的案例
开发语言·rust·c#
roman_日积跬步-终至千里38 分钟前
【Go语言基础【20】】Go的包与工程
开发语言·后端·golang
music&movie1 小时前
算法工程师认知水平要求总结
人工智能·算法
秦少游在淮海1 小时前
C++ - string 的使用 #auto #范围for #访问及遍历操作 #容量操作 #修改操作 #其他操作 #非成员函数
开发语言·c++·stl·string·范围for·auto·string 的使用
const5441 小时前
cpp自学 day2(—>运算符)
开发语言·c++
心扬1 小时前
python生成器
开发语言·python
阿蒙Amon1 小时前
06. C#入门系列【自定义类型】:从青铜到王者的进阶之路
开发语言·c#
虾球xz1 小时前
CppCon 2015 学习:CLANG/C2 for Windows
开发语言·c++·windows·学习
laocui12 小时前
Σ∆ 数字滤波
人工智能·算法