图像处理01 小波变换

一.为什么需要离散小波变换

连续小波分解,通过改变分析窗口大小,在时域上移动窗口和基信号相乘,最后在全时域上整合。通过离散化连续小波分解可以得到伪离散小波分解, 这种离散化带有大量冗余信息且计算成本较高。

小波变换的公式如下:

​ ​​


​​

复制代码
通过下面步骤即可得到不同尺度下的小波变换。

二.离散小波变换

复制代码
我们将小波的尺度和平移参数以2的指数幂的形式进行变换,我们可以得到一串不同的小波。这些子小波的尺度参数以2的j次方的形式增长。当使用这一系列的子小波,对一个连续函数进行离散分析时,我们所获得的是一组小波分析的系数,这个分析过程称为**小波系列分解**。

而高尺度小波代表着低频信息,小尺度的小波代表着高频信息。

因此如下图所示,不同尺度的小波来实现频率上的覆盖。

复制代码
因此我们可以理解,为什么离散小波变换可以等效为通过一个高通和低通滤波器。

更直观的可以用下面的图片来表示。

三.直观意义

当我们懂了上面的内容,再来看看小波变换的过程,是否能有了以下体会。

小波分解的多尺度可以类比为我们使用不同的"放大镜"去观察一个物体。想象一下你手里有一张非常复杂的画,画面上有大的物体,如山脉、树木,但也有非常细小的细节,如叶子上的纹理或昆虫的触角。
粗尺度(低分辨率) :当你使用低倍的放大镜(或者站得很远)去看这幅画时,你可以看到大的物体,如山脉和树木,但可能看不到细小的纹理或昆虫。在小波分解中,这就像我们查看信号的低频部分,捕获其主要的、宽泛的特征。
细尺度(高分辨率) :现在,如果你换一个高倍的放大镜(或者走近一些)去看同一幅画,你可能会失去对整体的感知,但可以清晰地看到叶子上的纹理或昆虫的触角等细节。在小波分解中,这就像我们查看信号的高频部分,捕获其细节和快速的变化。

小波分解的美妙之处在于,它同时提供了多个尺度的视角,让我们既可以看到信号的整体特征,又可以看到其细节。这就像我们可以同时拥有多个不同倍率的放大镜,让我们在需要的时候选择合适的一个来观察画面。

四.小波变换实现分解和重构。

如图a是带有噪声的信号,经过4层小波变换得到的变换后的先后如下。

代码如下所示:

复制代码
%% 1.生成仿真信号
Fs = 1000; % 采样频率
t = 0:1/Fs:1-1/Fs; % 时间向量
% 创建一个合成信号:包含不同频率的正弦波、趋势和噪声
signal = cos(2*pi*10*t) + 0.5*sin(2*pi*50*t) + t + 0.5*randn(size(t));
figure('color','white')
subplot(3,2,1)
%%  2.绘制DWT分解图
subplot(6,1,1);
plot(signal)
ylabel(['a']);
[C,L] = wavedec(signal,4,waveletType);
for i=1:4
    a = wrcoef('a',C,L,waveletType,5-i);
    subplot(6,1,i+1);
    plot(a);
    ylabel(['a',num2str(5-i)]);
end

相关推荐
凯禾瑞华养老实训室1 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
湫兮之风2 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo33 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823403 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT3 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
dlraba8024 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE4 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
小憩-6 小时前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋6 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ6 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习