spark中write算子和format算子详解

在spark中,想要往数据库或者某sink路径里面写数据,存到外部存储系统,如文件系统、数据库或数据仓库,经常会用到write算子。

具体来说,write算子通常与DataFrameDataset API一起使用,用于将数据写入持久化存储。

以下是一些常见的write算子的用途和示例:

1. 写入文件系统(例如,HDFS、S3等):

Scala 复制代码
// 将DataFrame写入Parquet格式的文件
dataframe.write.parquet("/path/to/destination/folder")

2. 写入关系型数据库

Scala 复制代码
// 将DataFrame写入关系型数据库(例如,MySQL)
dataframe.write
  .format("jdbc")
  .option("url", "jdbc:mysql://hostname:port/database")
  .option("dbtable", "table_name")
  .option("user", "username")
  .option("password", "password")
  .save()

3. 写入列式数据库

Scala 复制代码
// 将DataFrame写入列式数据库(例如,Cassandra)
dataframe.write
  .format("org.apache.spark.sql.cassandra")
  .option("keyspace", "keyspace_name")
  .option("table", "table_name")
  .mode("append")
  .save()

4. 写入其他数据格式

Scala 复制代码
// 将DataFrame写入JSON格式的文件
dataframe.write.json("/path/to/destination/folder")

// 将DataFrame写入CSV格式的文件
dataframe.write.csv("/path/to/destination/folder")

这只是一小部分 write算子的示例。实际上,write算子支持多种格式和配置选项,以满足不同存储系统和需求的要求。具体的用法取决于你要写入的目标存储系统和数据格式。


那么wirte后面的format算子,这里面的参数一般有哪些常用的呢?

1. Parquet格式

Scala 复制代码
dataframe.write.format("parquet").save("/path/to/destination/folder")

2. JSON格式

Scala 复制代码
dataframe.write.format("json").save("/path/to/destination/folder")

3. CSV格式

Scala 复制代码
dataframe.write.format("csv").save("/path/to/destination/folder")

4. 关系型数据库(JDBC)

Scala 复制代码
dataframe.write.format("jdbc")
  .option("url", "jdbc:mysql://hostname:port/database")
  .option("dbtable", "table_name")
  .option("user", "username")
  .option("password", "password")
  .save()

5. 列式数据库(Cassandra)

Scala 复制代码
dataframe.write.format("org.apache.spark.sql.cassandra")
  .option("keyspace", "keyspace_name")
  .option("table", "table_name")
  .mode("append")
  .save()

6. Elasticsearch

Scala 复制代码
dataframe.write.format("org.elasticsearch.spark.sql")
  .option("es.nodes", "elasticsearch_host")
  .option("es.port", "9200")
  .option("es.resource", "index_name/document_type")
  .mode("append")
  .save()

每个存储系统或数据格式都有自己的一组特定选项,用于配置连接信息、目标路径、写入模式等。这些选项可以通过option方法进行设置,具体的选项取决于所使用的format。查阅相关文档可以帮助了解特定存储系统或数据格式所支持的选项。

相关推荐
武子康几秒前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
lzhlizihang1 小时前
【Hive sql 面试题】求出各类型专利top 10申请人,以及对应的专利申请数(难)
大数据·hive·sql·面试题
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
大数据编程之光1 小时前
Hive 查询各类型专利 top10 申请人及专利申请数
大数据·数据仓库·hive·hadoop
GDDGHS_2 小时前
大数据工具 flume 的安装配置与使用 (详细版)
大数据·flume
Acrelhuang3 小时前
安科瑞5G基站直流叠光监控系统-安科瑞黄安南
大数据·数据库·数据仓库·物联网
皓7413 小时前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
Mephisto.java3 小时前
【大数据学习 | kafka高级部分】kafka的kraft集群
大数据·sql·oracle·kafka·json·hbase
Mephisto.java3 小时前
【大数据学习 | kafka高级部分】kafka的文件存储原理
大数据·sql·oracle·kafka·json
yx9o4 小时前
Kafka 源码 KRaft 模式本地运行
分布式·kafka