Flink-简介与基础


一、Flink起源

大数据计算引擎由批处理项流处理发展,由处理单一类型数据到批流一体方法发展。由单一功能逐步发展成更通用、更高效、更易用的一站式(混合架构)的计算引擎。计算引擎发展过程中典型架构:

  • MapReduce:批处理引擎,hadoop中核心组件,开创大数据处理核心思想,即map、reduce。
  • Storm:流处理引擎,为了满足更高时效性而产生
  • Spark:支持流式处理和批处理的统一计算引擎,基于内存计算、提高性能
  • Flink:支持流式处理和批处理的统一计算引擎,支持状态流、时间流等流处理

Flink诞生于柏林工业大学的一个大数据研究项目StratoSphere,2014年被捐献给Apache,成为Apache的顶级大数据项目。Flink将计算的主要方向定位为流处理,将批处理作为流处理的一个特殊情况。并提供了一些如数据状态、事件时间、分布式快照、watermark等高级功能。

二、Flink数据处理模式

在大数据领域早期基本都是批处理,后期随着大数据处理应用范围的拓展,逐步发到到流处理。

1.批处理

批处理就是对整个有界数据集进行排序、统计或者汇总计算后输出结果。批处理的数据主要有以下特点:

  • 有界:批处理数据集代表数据的有限集合
  • 持久:数据通常存储在可重复获取的持久存储设备中
  • 就绪:数据在计算之前已经就绪,不会发生变化
  • 大量:批处理操作通常是处理海量数据集的唯一方法

2.流处理

流处理是无界数据流,更符合实际情况,例如交易数据、传感器数据等都是不断产生而不会结束。流处理是产生一条数据就会处理一条数据,流处理系统需要对进入系统的数据进行实时计算。而且流数据不一定是持久化的,可能是业务系统实时产生的。

3.Flink流批一体处理

Flink即可以进行流处理,也支持对有界数据进行批处理。也就是Flink可以处理消息队列或者日志这类流式数据源的实时数据,也支持从各种数据源消费有界的历史数据。

三、Flink架构

Flink是一个分布式系统,采用master/slave架构,可以有效的分配和管理计算资源。集成了常见的集群资源管理器、也可以作为单独集群运行。

1.Flink集群

Flink运行时主要由一个JobManager和多个TaskManager组成。

Flink应用程序不是运行时程序执行的一部分,主要是将用户的Flink作业提交到JobManager,并触发执行Flink程序。

3.JobManager

JobManger主要职责是协调Flink应用程序的分布式执行,主要是调度task、监控task执行情况、协调checkpoint、故障恢复等。

4.TaskManager

TaskManager主要是执行作业流中的task,并且缓存和交换数据流。

四、Flink应用程序

Flink应用程序编写主要是指用户对数据需要进行的操作,Flink将对数据的处理分为输入、处理、输出三个步骤。其中Source负责管理数据源输入、Transformation负责数据计算、Sink负责将结果输出。Transformation是根据需求由Flink提供的算子组合而成的一个处理流程。

Flink首先会将应用构建成一个Dataflow graph。当调用env.execute()时,graph会被打包并发送到JobManager上,JobManager会协调并执行应用。

五、Flink高级特性

1.时间流(Time)和窗口(Window)

实际应用中有时需要对历史数据进行重新处理和分析。如果时间流只能依靠机器时钟,一些基于时间的统计与运算得出的结果可能会有错误和偏差,因为为了满足以上场景,Flink支持用数据流中的事件时间作为时间依据,而不是处理数据时的机器时间。

2.状态流(State)

流处理过程中,很多操作如何处理都需要依据之前所有数据的累积结果、一些窗口函数也需要缓存之前的数据。Flink中的算子都可以是由状态的,这些状态都是本地访问,这样可以提高吞吐量和减低延迟。

3.快照(Checkpoint)

大数据运行过程中无法避免故障的出现,因此需要一定的故障恢复机制。Flink通过定期状态快照和流重放来实现故障恢复和精确的一次计算。

总结

主要介绍了Flink背景和以流处理为主的设计理念,Flink的运行时架构、Flink作业的编程以及Flink的高级特性。


参考文档

1.Flink基础概念

2.Flink产生的背景以及简介

3.Flink架构

相关推荐
源码技术栈8 小时前
SaaS基于云计算、大数据的Java云HIS平台信息化系统源码
java·大数据·云计算·云his·his系统·云医院·区域his
Elastic 中国社区官方博客8 小时前
Elasticsearch 索引副本数
大数据·数据库·elasticsearch·搜索引擎·全文检索
Eternity......8 小时前
SparkSQL基本操作
大数据·spark
268572599 小时前
Elasticsearch 初步认识
大数据·elasticsearch·搜索引擎·全文检索·es
python算法(魔法师版)9 小时前
网络编程入门(一)
大数据·网络·网络协议·计算机网络
caihuayuan510 小时前
生产模式下react项目报错minified react error #130的问题
java·大数据·spring boot·后端·课程设计
兔子坨坨11 小时前
详细了解HDFS
大数据·hadoop·hdfs·big data
夏旭泽11 小时前
系统架构-大数据架构设计
大数据·系统架构
Eternity......12 小时前
Spark,连接MySQL数据库,添加数据,读取数据
大数据·spark
智慧化智能化数字化方案12 小时前
报告精读:华为2024年知行合一通信行业数据治理实践指南报告【附全文阅读】
大数据·数据治理实践指南报告·华为2024年知行合一·通信行业数据治理实践指南报告