1\]Chen X, Yan B, Zhu J, et al. Transformer tracking \[C\]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans, LA, USA: IEEE, 2021: 8126-8135. \[2\]Li C, Wu X, Zhao N, et al. Fusing two-stream convolutional neural networks for RGB-T object tracking\[J\]. Neurocomputing, 2018, 281: 78-85. \[3\]Wang X, Shu X, Zhang S, et al. MFGNet: Dynamic modality-aware filter generation for RGB-T tracking\[J\]. IEEE Transactions on Multimedia, 2022,25:4335 - 4348. \[4\]Zhang P, Wang D, Lu H, et al. Learning adaptive attribute-driven representation for real-time RGB-T tracking\[J\]. International Journal of Computer Vision, 2021, 129: 2714-2729. \[5\]Li C L, Lu A, Zheng A H, et al. Multi-adapter rgbt tracking \[C\]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE, 2019: 2262-2270. \[6\]Lu A, Li C, Yan Y, et al. RGBT tracking via multi-adapter network with hierarchical divergence loss \[C\]//Proceedings of the IEEE Transactions on Image Processing. Piscataway, NJ, USA: IEEE, 2021: 5613-5625. \[7\]Xiao Y, Yang M, Li C, et al. Attribute-based progressive fusion network for rgbt tracking \[C\]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, BC, Canada: AAAI Press, 2022, 36(3): 2831-2838. \[8\]Mei J , Zhou D , Cao J , et al. HDINet: hierarchical dual-sensor interaction network for RGBT tracking \[J\]. IEEE Sensors Journal, 2021(21-15): 16915-16926. \[9\]Yu Y, Xiong Y, Huang W, et al. Deformable siamese attention networks for visual object tracking\[C\]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 6728-6737. \[10\]Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking\[C\]//Computer Vision--ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14. Springer International Publishing, 2016: 850-865. \[11\]Wang Q, Teng Z, Xing J, et al. Learning attentions: residual attentional siamese network for high performance online visual tracking\[C\]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4854-4863. \[12\]Feng M, Su J. Learning reliable modal weight with transformer for robust RGBT tracking\[J\]. Knowledge-Based Systems, 2022, 249: 108945-108958. \[13\]Cai Y, Sui X, Gu G, et al. Learning modality feature fusion via transformer for RGBT-tracking\[J\]. Infrared Physics \& Technology, 2023, 133: 104819-104828. \[14\]Lan X, Ye M, Zhang S, et al. Robust collaborative discriminative learning for RGB-infrared tracking\[C\]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32(1). \[15\]Lan X, Ye M, Shao R, et al. Online non-negative multi-modality feature template learning for RGB-assisted infrared tracking\[J\]. IEEE Access, 2019, 7: 67761-67771. \[16\]Liu H P, Sun F C. Fusion tracking in color and infrared images using joint sparse representation\[J\]. Science China Information Sciences, 2012, 55: 590-599. \[17\]Luo C, Sun B, Yang K, et al. Thermal infrared and visible sequences fusion tracking based on a hybrid tracking framework with adaptive weighting scheme\[J\]. Infrared Physics \& Technology, 2019, 99: 265-276. \[18\]Zhang P, Zhao J, Bo C, et al. Jointly modeling motion and appearance cues for robust RGB-T tracking\[J\]. IEEE Transactions on Image Processing, 2021, 30: 3335-3347. \[19\]Li C, Cheng H, Hu S, et al. Learning collaborative sparse representation for grayscale-thermal tracking \[J\]. IEEE Transactions on Image Processing, 2016, 25(12): 5743-5756. \[20\]Li C, Liang X, Lu Y, et al. RGB-T object tracking: benchmark and baseline \[J\]. Pattern Recognition, 2019, 96: 106977-106989. \[21\]Li C, Xue W, Jia Y, et al. Lasher: a large-scale high-diversity benchmark for RGBT tracking \[J\]. IEEE Transactions on Image Processing, 2022, 31: 392-404. \[22\]Gao Y, Li C, Zhu Y, et al. Deep adaptive fusion network for high performance RGBT tracking \[C\]//Proceedings of the IEEE International Conference on Computer Vision Workshops(ICCVW). Seoul, Korea (South): IEEE, 2019: 91-99. \[23\]Zhu Y, Li C, Luo B, et al. Dense feature aggregation and pruning for RGBT tracking \[C\]//Proceedings of the ACM International Conference on Multimedia. Nice, France: ACM, 2019: 465-472. \[24\]Li C L, Zhao N, Lu Y J, Zhu C L, Tang J. Weighted sparse representation regularized graph learning for RGB-T object tracking \[C\]//Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, CA, USA: ACM, 2017: 1856-1864. \[25\]Danelljan M, Bhat G, Shahbaz Khan F, et al. ECO: efficient convolution operators for tracking \[C\]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu, HI, USA: IEEE, 2017: 6638-6646. \[26\]Danelljan M, Robinson A, Shahbaz Khan F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking \[C\]//Computer Vision--ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14. Springer International Publishing, 2016: 472-488. \[27\]Nam H, Han B. Real-time MDNet \[C\]//Proceedings of the 15th European Conference on Computer Vision(ECCV). Munich, Germany: Springer, 2018: 89-104. \[28\]Lu A, Qian C, Li C, Tang J, Wang L. Duality-gated mutual condition network for RGBT tracking \[J\]. IEEE Transactions on Neural Networks and Learning Systems, 2022,1-14. \[29\]Zhang H, Zhang L, Zhuo L, Zhang J. Object tracking in RGB-T videos using modal-aware attention network and competitive learning \[J\]. Sensors, 2020, 20(2): 393. \[30\]Zhang L, Danelljan M, Gonzalez-Garcia A, van de Weijer J, Shahbaz Khan F. Multi-modal fusion for end-to-end RGB-T tracking \[C\]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE, 2019: 2252-2261. \[31\]Zhu Y, Li C, Tang J, et al. Quality-aware feature aggregation network for robust RGBT tracking\[J\]. IEEE Transactions on Intelligent Vehicles, 2020, 6(1): 121-130. \[32\]Zhu Y, Li C, Tang J, et al. RGBT tracking by trident fusion network\[J\]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(2): 579-592.
相关推荐
简简单单做算法43 分钟前
基于mediapipe深度学习的虚拟画板系统python源码qq_314009831 小时前
Windows+VSCode搭建小智(xiaozhi)开发环境技术便签1 小时前
第一篇:揭示模型上下文协议(MCP):AI的通用连接器AI视觉网奇1 小时前
opencv 可视化函数zstar-_3 小时前
【Ragflow】24.Ragflow-plus开发日志:增加分词逻辑,修复关键词检索失效问题love530love3 小时前
【笔记】2025 年 Windows 系统下 abu 量化交易库部署与适配指南love530love3 小时前
【笔记】为 Python 项目安装图像处理与科学计算依赖(MINGW64 环境)YYXZZ。。3 小时前
PyTorch-Transforms的使用(二)东临碣石823 小时前
【AI论文】推理语言模型的强化学习熵机制老兵发新帖3 小时前
BiliNote部署实践