EEG 脑电信号处理合集(2): 信号预处理

脑电信号在采集完以后,需要进行一系列的预处理操作,然后才能用于后续的科学研究和计算。预处理是脑电信号分析最基本且重要的一步。基于python环境MNE库。

1 使用带通滤波器,信号滤波,去噪,去工频干扰

python 复制代码
data_path = sample.data_path()
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"

raw = mne.io.read_raw_fif(raw_fname).crop(0, 60).pick("meg").load_data()

reject = dict(mag=5e-12, grad=4000e-13)
raw.filter(1, 30, fir_design="firwin")

加载完raw数据以后,直接使用raw.filter() 进行带通滤波。

2 进行独立成分分析,去除一些artifacts

由于独立成分分析对低飘移很敏感,所以一般在进行独立成分分析之前,需要对数据进行高通滤波,一般高通滤波的截止频率为1H在。

这里可以使用mne.preporcess.ICA() 函数 实现对raw信号的独立成分分析。

python 复制代码
def run_ica(method, fit_params=None):
    ica = ICA(
        n_components=20,
        method=method,
        fit_params=fit_params,
        max_iter="auto",
        random_state=0,
    )
    t0 = time()
    ica.fit(raw, reject=reject)
    fit_time = time() - t0
    title = "ICA decomposition using %s (took %.1fs)" % (method, fit_time)
    ica.plot_components(title=title)
相关推荐
吴佳浩6 小时前
Python入门指南(五) - 为什么选择 FastAPI?
后端·python·fastapi
寰天柚子6 小时前
Java并发编程中的线程安全问题与解决方案全解析
java·开发语言·python
2503_928411567 小时前
项目中的一些问题(补充)
人工智能·python·tensorflow
superman超哥7 小时前
仓颉语言中锁的实现机制深度剖析与并发实践
c语言·开发语言·c++·python·仓颉
vv_Ⅸ7 小时前
打卡day42
python
Lvan的前端笔记8 小时前
python:深入理解 Python 的 `__name__ == “__main__“` 与双下划线(dunder)机制
开发语言·python
爱笑的眼睛118 小时前
深入解析Matplotlib Axes API:构建复杂可视化架构的核心
java·人工智能·python·ai
爱埋珊瑚海~~8 小时前
基于MediaCrawler爬取热点视频
大数据·python
工程师丶佛爷8 小时前
从零到一MCP集成:让模型实现从“想法”到“实践”的跃迁
大数据·人工智能·python
2501_921649499 小时前
免费获取股票历史行情与分时K线数据 API
开发语言·后端·python·金融·数据分析