EEG 脑电信号处理合集(2): 信号预处理

脑电信号在采集完以后,需要进行一系列的预处理操作,然后才能用于后续的科学研究和计算。预处理是脑电信号分析最基本且重要的一步。基于python环境MNE库。

1 使用带通滤波器,信号滤波,去噪,去工频干扰

python 复制代码
data_path = sample.data_path()
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"

raw = mne.io.read_raw_fif(raw_fname).crop(0, 60).pick("meg").load_data()

reject = dict(mag=5e-12, grad=4000e-13)
raw.filter(1, 30, fir_design="firwin")

加载完raw数据以后,直接使用raw.filter() 进行带通滤波。

2 进行独立成分分析,去除一些artifacts

由于独立成分分析对低飘移很敏感,所以一般在进行独立成分分析之前,需要对数据进行高通滤波,一般高通滤波的截止频率为1H在。

这里可以使用mne.preporcess.ICA() 函数 实现对raw信号的独立成分分析。

python 复制代码
def run_ica(method, fit_params=None):
    ica = ICA(
        n_components=20,
        method=method,
        fit_params=fit_params,
        max_iter="auto",
        random_state=0,
    )
    t0 = time()
    ica.fit(raw, reject=reject)
    fit_time = time() - t0
    title = "ICA decomposition using %s (took %.1fs)" % (method, fit_time)
    ica.plot_components(title=title)
相关推荐
空影星2 分钟前
轻量日记神器RedNotebook,高效记录每一天
python·数据挖掘·数据分析·音视频
搬砖ing换来金砖19 分钟前
Python入门-Task02
开发语言·python
databook32 分钟前
告别盲人摸象,数据分析的抽样方法总结
后端·python·数据分析
全栈陈序员1 小时前
【Python】基础语法入门(九)—— 代码规范、调试技巧与性能初探
开发语言·python·代码规范
nvd111 小时前
解决 Gemini API 连接卡住问题的方案
python
李剑一1 小时前
Python学习笔记2
python
晨非辰1 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
有梦想的西瓜1 小时前
如何优化电力系统潮流分布:最优潮流(OPF)问题
python·电力·opf
DanCheng-studio7 小时前
网安毕业设计简单的方向答疑
python·毕业设计·毕设
轻抚酸~8 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法