EEG脑电信号处理合集(1):功率谱中常见artifacts

通常EEG脑电信号采集完成以后,我们可以绘制出功率谱,一个正常的功率谱如下图所示:

在10H在处有个明显的突起,在后方通道中,这是我们所期望看到的。每个通道功率谱曲线都有一个负斜率,这是因为较高的频率通常会有一个越来越低的功率。

一种在功率谱中常见的artifacts是直线噪声,这种artifacts来自于EEG脑电信号监测室的电路活动。美国的电路的工频为60Hz, 中国电路的工频为50Hz。 通常我们可以看到在这些工频及工频整数倍处有一系列的功率峰值,如下图所示。

另外一个在功率谱中常见的artifatcs 来自于右腿驱动电路和另外一个电极的桥连。我们在使用凝胶的时候,需要注意凝胶使用,不能过少,也不能过多,否则都会对信号采集产生影响,甚至导致某些通道的数据无法使用,不得不被丢弃。

相关推荐
reasonsummer4 小时前
【办公类-100-01】20250515手机导出教学照片,自动上传csdn+最大化、最小化Vs界面
开发语言·python
Doker 多克4 小时前
Python-Django系列—日志
python·日志
苏三福5 小时前
ros2 hunmle bag 数据包转为图片数据 python版
开发语言·python·ros2humble
大神薯条老师6 小时前
Python零基础入门到高手8.4节: 元组与列表的区别
开发语言·爬虫·python·深度学习·机器学习·数据分析
z人间防沉迷k6 小时前
堆(Heap)
开发语言·数据结构·笔记·python·算法
小白学大数据7 小时前
Python爬虫如何应对网站的反爬加密策略?
开发语言·爬虫·python
Eric.Lee20217 小时前
Ubuntu shell指定conda的python环境启动脚本
python·ubuntu·conda·shell
芒果量化7 小时前
量化交易 - 网格交易策略实现与原理解析
python·算法·机器学习·金融
LetsonH7 小时前
Python工具链UV整合环境管理
开发语言·python·uv
欣然~7 小时前
基于深度学习进行运输系统优化
python·深度学习