EEG脑电信号处理合集(1):功率谱中常见artifacts

通常EEG脑电信号采集完成以后,我们可以绘制出功率谱,一个正常的功率谱如下图所示:

在10H在处有个明显的突起,在后方通道中,这是我们所期望看到的。每个通道功率谱曲线都有一个负斜率,这是因为较高的频率通常会有一个越来越低的功率。

一种在功率谱中常见的artifacts是直线噪声,这种artifacts来自于EEG脑电信号监测室的电路活动。美国的电路的工频为60Hz, 中国电路的工频为50Hz。 通常我们可以看到在这些工频及工频整数倍处有一系列的功率峰值,如下图所示。

另外一个在功率谱中常见的artifatcs 来自于右腿驱动电路和另外一个电极的桥连。我们在使用凝胶的时候,需要注意凝胶使用,不能过少,也不能过多,否则都会对信号采集产生影响,甚至导致某些通道的数据无法使用,不得不被丢弃。

相关推荐
小白学大数据3 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python
Shy9604184 小时前
Doc2Vec句子向量
python·语言模型
艾思科蓝-何老师【H8053】6 小时前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
秀儿还能再秀7 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
阿_旭8 小时前
如何使用OpenCV和Python进行相机校准
python·opencv·相机校准·畸变校准
幸运的星竹8 小时前
使用pytest+openpyxl做接口自动化遇到的问题
python·自动化·pytest
kali-Myon9 小时前
ctfshow-web入门-SSTI(web361-web368)上
前端·python·学习·安全·web安全·web
B站计算机毕业设计超人9 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化