gpt是如何进行训练的?

原理

gpt就是一个类似于成语接龙的游戏,根据之前的n个字符,预测下一个字符,那么gpt的输入和输出是如何构造的呢?比如给一个句子如下:

sentence:如何理解gpt的原理。

构造gpt输入输入:

input:如何理解gpt的原

output:何理解gpt的原理

是的你没有看错,输入输出就是一个字符的错位。

那么输入时如何经过self-mask-attention来得到输出的呢?

python 复制代码
    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        xx = self.c_attn(x)
        q, k, v  = xx.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if self.flash:
            # efficient attention using Flash Attention CUDA kernels
            y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
        else:
            # manual implementation of attention
            kt = k.transpose(-2, -1)
            att = (q @ kt) * (1.0 / math.sqrt(k.size(-1)))
            bais = self.bias
            bais = bais[:,:,:T,:T]
            att = att.masked_fill(bais == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.resid_dropout(self.c_proj(y))
        return y

input经过矩阵计算得到权重att后,经过masked_fill掩码处理,得到了掩码的att权重,然后经过softmax归一化处理,最后的v乘积得到了每个output字符用前面input字符权重加权的表示,最后经过矩阵变换成voc_size大小的输出,就是我们要求的output输出,最后把我们计算得到output和target进行交叉熵损失函数计算,得到最终的loss,从而进行梯度下降优化整个模型。

相关推荐
代码程序猿RIP1 分钟前
【Pytorch】(1)Pytorch环境安装-①创建虚拟环境
人工智能·pytorch·python
倔强青铜三26 分钟前
就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!
人工智能·python·面试
李元豪30 分钟前
我有免费的大模型能力,文本转语音,语音转文本,文本生成视频的能力。如何组合这些资源能力?生成一个有价值的可以挣钱的项目为社会做贡献?
人工智能
寻觅神话0631 分钟前
Coze扣子 - AI生成数字人口播视频
人工智能
牛奶还是纯的好1 小时前
目标检测标注格式
人工智能·目标检测·目标跟踪
摘取一颗天上星️1 小时前
端到端记忆网络 vs 神经图灵机:外部记忆的两种哲学之争
网络·人工智能·深度学习·机器学习·lstm·外部记忆
vlln1 小时前
【论文解读】rStar:用互洽方法增强 SLM(小型语言模型) 推理能力
人工智能·深度学习·语言模型·自然语言处理·transformer
CoderJia程序员甲1 小时前
awesome-llm-apps 项目带你探索语言模型的无限可能
人工智能·ai·语言模型·自然语言处理
我不是小upper2 小时前
PDF转Markdown基准测试
图像处理·人工智能·markdown·marker·docling
家庭云计算专家2 小时前
ONLYOFFICE 的AI技巧-1.集成OCR、文本转图像、电子表格集成等新功能
人工智能·ocr·onlyoffice·协作空间