gpt是如何进行训练的?

原理

gpt就是一个类似于成语接龙的游戏,根据之前的n个字符,预测下一个字符,那么gpt的输入和输出是如何构造的呢?比如给一个句子如下:

sentence:如何理解gpt的原理。

构造gpt输入输入:

input:如何理解gpt的原

output:何理解gpt的原理

是的你没有看错,输入输出就是一个字符的错位。

那么输入时如何经过self-mask-attention来得到输出的呢?

python 复制代码
    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        xx = self.c_attn(x)
        q, k, v  = xx.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if self.flash:
            # efficient attention using Flash Attention CUDA kernels
            y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
        else:
            # manual implementation of attention
            kt = k.transpose(-2, -1)
            att = (q @ kt) * (1.0 / math.sqrt(k.size(-1)))
            bais = self.bias
            bais = bais[:,:,:T,:T]
            att = att.masked_fill(bais == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.resid_dropout(self.c_proj(y))
        return y

input经过矩阵计算得到权重att后,经过masked_fill掩码处理,得到了掩码的att权重,然后经过softmax归一化处理,最后的v乘积得到了每个output字符用前面input字符权重加权的表示,最后经过矩阵变换成voc_size大小的输出,就是我们要求的output输出,最后把我们计算得到output和target进行交叉熵损失函数计算,得到最终的loss,从而进行梯度下降优化整个模型。

相关推荐
●VON1 分钟前
从模型到价值:MLOps 工程体系全景解析
人工智能·学习·制造·von
智慧地球(AI·Earth)23 分钟前
Codex配置问题解析:wire_api格式不匹配导致的“Reconnecting...”循环
开发语言·人工智能·vscode·codex·claude code
GISer_Jing27 分钟前
AI:多智能体协作与记忆管理
人工智能·设计模式·aigc
qq_4112624232 分钟前
纯图像传感器(只出像素),还是 Himax WiseEye/WE1/WE-I Plus 这类带处理器、能在端侧跑模型并输出“metadata”的模块
人工智能·嵌入式硬件·esp32·四博智联
InfiSight智睿视界42 分钟前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
Toky丶1 小时前
【文献阅读】BitNet Distillation
人工智能
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-01-09
人工智能·经验分享·神经网络·搜索引擎·产品运营
莫非王土也非王臣1 小时前
卷积神经网络与应用
人工智能·神经网络·cnn
Yeats_Liao1 小时前
MindSpore开发之路(二十五):融入开源:如何为MindSpore社区贡献力量
人工智能·分布式·深度学习·机器学习·华为·开源
Hi202402171 小时前
如何通过选择正确的畸变模型解决相机标定难题
人工智能·数码相机·计算机视觉·自动驾驶