Re53:读论文 How Can We Know What Language Models Know?

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:How Can We Know What Language Models Know?

ArXiv网址:https://arxiv.org/abs/1911.12543

官方GitHub项目(prompt之类的都有):https://github.com/jzbjyb/LPAQA

本文是2020年TACL论文,作者来自卡耐基梅隆大学和博世北美研究所。

本文关注探索LM中蕴含的知识。以前已经有工作用完形填空的方式来探查知识(Obama is a __ by profession),但是这些填空模版(prompt)都是手工做的,因此可能是sub-optimal的(在上一篇论文最后也提及了),不能充分发挥LM的能力。

本文的解决方案是自动挖掘prompt(远程监督、回译、集成)

这篇工作的实验真的多,这也太能做了。

文章目录

  • [1. 探查知识的方案](#1. 探查知识的方案)
  • [2. 实验](#2. 实验)
    • [1. 数据集](#1. 数据集)
    • [2. LM](#2. LM)
    • [3. baseline](#3. baseline)
    • [4. 实验设置](#4. 实验设置)
    • [5. 主实验结果](#5. 主实验结果)
    • [6. 实验分析](#6. 实验分析)
      • [Prediction Consistency by Prompt](#Prediction Consistency by Prompt)
      • [POS-based Analysis](#POS-based Analysis)
      • [Cross-model Consistency](#Cross-model Consistency)
      • [Linear vs. Log-linear Combination](#Linear vs. Log-linear Combination)
    • [7. 失败trick集合](#7. 失败trick集合)

1. 探查知识的方案

从数据库中获取知识是deterministic的,但从LM中获取知识(完形填空)是不可靠的。

本文用的都是双向LM,做填空题的那种。

  1. mining-based methods:远程监督:从维基百科中找三元组出现的句子。
    1. 方法一:Middle-word Prompts(subject prompt object)
    2. 方法二:Dependency-based Prompts(句法分析→subject和object之间的依存路径)

      (句法分析这块我也不懂总之大概是这么个意思吧)
  2. paraphrasing-based methods:对人工或挖掘得到的种子prompt进行回译
  3. 挑选和集成prompt
    1. Top-1 Prompt Selection:选择在训练集上准确率最高的prompt(这个准确率的公式定义比较复杂,但是反正就这个prompt对应的关系里object预测正确的占所有样本的比例)
    2. Rank-based Ensemble:top-K概率求和
    3. Optimized Ensemble:大意是说对每个关系的T个prompt分别训练权重

这篇paper里面还提及了BERT跟LM的标准定义严格来说不一样这一茬:

感觉现在已经没人在乎了=== 随便吧==

2. 实验

1. 数据集

2. LM

BERT-base

BERT-large

增强了外部的实体表征:

ERNIE

Know-Bert

3. baseline

  1. Majority
  2. Man:手工prompt
  3. Mine
  4. Mine+Man
  5. Mine+Para
  6. Man+Para
  7. TopK:求平均
  8. Opti.:加权平均
  9. Oracle:所有prompt中有一个能预测正确,就算LM知道这个知识

4. 实验设置

mine 40个prompts

回译7个prompts

清洗噪音prompts

Adam

batch size: 32

5. 主实验结果

与手工prompt相比,效果得到了提升:

集成权重:

K的选择:

prompt做轻微修改也能改变效果:

两种远程监督方案的对比:

不同LM的实验结果:

在LAMA-HUN(一个比LAMA更难的benchmark)上的表现:

在Google-RE上的表现:

6. 实验分析

Prediction Consistency by Prompt

divergence是两个prompt预测结果不同的程度:

皮尔森相关系数是0.25,说明编辑距离和divergence之间确实存在弱相关性(prompt差别越大,预测结果差别越大)

POS-based Analysis

用排名分布而不是准确率分布,在脚注解释了一下是因为不同关系的准确率的量级不同

Cross-model Consistency

检测prompts能不能跨模型通用

Linear vs. Log-linear Combination

求和的权重

7. 失败trick集合

这块真实诚啊

  1. LM-aware Prompt Generation
  2. Forward and Backward Probabilities
相关推荐
Luke Ewin几秒前
基于FunASR开发的可私有化部署的语音转文字接口 | FunASR接口开发 | 语音识别接口私有化部署
人工智能·python·语音识别·fastapi·asr·funasr
龙山云仓3 分钟前
No095:沈括&AI:智能的科学研究与系统思维
开发语言·人工智能·python·机器学习·重构
LiYingL5 分钟前
多人对话视频生成的新发展:麻省理工学院数据集和基线模型 “CovOG
人工智能
人工智能培训8 分钟前
DNN案例一步步构建深层神经网络(二)
人工智能·神经网络·大模型·dnn·具身智能·智能体·大模型学习
TG:@yunlaoda360 云老大10 分钟前
华为云国际站代理商的GACS主要有什么作用呢?
人工智能·自然语言处理·华为云
AI营销资讯站12 分钟前
原圈科技AI营销内容生产体系助力企业降本提效新变革
大数据·人工智能
AI科技星13 分钟前
质量定义方程中条数概念的解析与经典例子计算
数据结构·人工智能·经验分享·算法·计算机视觉
啊阿狸不会拉杆13 分钟前
《数字图像处理》第8章-图像压缩和水印
图像处理·人工智能·算法·计算机视觉·数字图像处理
智航GIS14 分钟前
ArcGIS大师之路500技---034重采样算法选择
人工智能·算法·arcgis