刷题顺序按照代码随想录建议
题目描述
英文版描述
You are given an integer array coins
representing coins of different denominations and an integer amount
representing a total amount of money.
Return the number of combinations that make up that amount . If that amount of money cannot be made up by any combination of the coins, return 0
.
You may assume that you have an infinite number of each kind of coin.
The answer is guaranteed to fit into a signed 32-bit integer.
Example 1:
Input: amount = 5, coins = [1,2,5] Output: 4 Explanation: there are four ways to make up the amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2] Output: 0 Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10] Output: 1
Constraints:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
- All the values of
coins
are unique. 0 <= amount <= 5000
英文版地址
中文版描述
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入: amount = 5, coins = [1, 2, 5] 输出: 4 解释: 有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
示例 2:
输入: amount = 3, coins = [2] 输出: 0 解释: 只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入: amount = 10, coins = [10] 输出: 1
提示:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins
中的所有值 互不相同0 <= amount <= 5000
中文版地址
解题方法
java
class Solution {
public int change(int amount, int[] coins) {
// dp[i][j] 表示由[0,i]中的硬币正好装满容积为j的背包共有dp[i][j]种方法
int[][] dp = new int[coins.length][amount + 1];
if (coins.length == 1) {
if (amount % coins[0] == 0) {
return 1;
} else {
return 0;
}
}
// 初始化
for (int j = 0; j < amount + 1; j++) {
if (j % coins[0] == 0) {
dp[0][j] = 1;
}
}
for (int i = 0; i < coins.length; i++) {
dp[i][0] = 1;
}
// 遍历顺序
for (int i = 1; i < coins.length; i++) {
for (int j = 0; j < amount + 1; j++) {
if (j >= coins[i]) {
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i]];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[coins.length - 1][amount];
}
}
复杂度分析
- 时间复杂度:O(n*amount),其中 amount是总金额,n 是数组 coins 的长度
- 空间复杂度:O(n*amount)